Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Проектирование аналоговых и цифровых устройств

Учебное пособие
Покупка
Основная коллекция
ПООП
Артикул: 233300.11.01
Доступ онлайн
296 ₽
от 252 ₽
В корзину
Учебное пособие содержит материал, необходимый для формирования у студентов знаний основ аналоговой и цифровой схемотехники и принципов построения цифровых узлов, привития навыков разработки и проектирования цифровых устройств, а также выполнения практических работ и курсового проекта по дисциплине «Электротехника, электроника и схемотехника». Рассмотрены методы расчета аналоговых схем и синтеза дискретных устройств комбинационного типа и автоматов с памятью. Приведены примеры расчета аналоговых схем и реализации цифровых устройств различного назначения на интегральных схемах. Соответствует требованиям федеральных государственных образовательных стандартов высшего образования последнего поколения. Для студентов учреждений высшего образования, обучающихся по направлению подготовки 09.03.01 «Информатика и вычислительная техника». Может быть полезно для студентов направлений подготовки «Конструирование и технология электронных средств», «Биотехнические системы и технологии» и «Информационная безопасность».
30
127
Проектирование аналоговых и цифровых устройств : учебное пособие / М. В. Бобырь, В. С. Титов, В. И. Иванов, В. А. Потехин. — 2-е изд., перераб. и доп. — Москва : ИНФРА-М, 2022. — 245 с. — (Высшее образование: Бакалавриат). - ISBN 978-5-16-015937-9. - Текст : электронный. - URL: https://znanium.ru/catalog/product/1872738 (дата обращения: 20.04.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
ПРОЕКТИРОВАНИЕ 
АНАЛОГОВЫХ 
И ЦИФРОВЫХ УСТРОЙСТВ

УЧЕБНОЕ ПОСОБИЕ

2-е издание, переработанное и дополненное

М.В. БОБЫРЬ
В.С. ТИТОВ
В.И. ИВАНОВ
В.А. ПОТЕХИН

Рекомендовано Учебно-методическим объединением 
по образованию в области прикладной информатики
в качестве учебного пособия для студентов, обучающихся 
по направлению «Прикладная информатика»

Москва
ИНФРА-М
2022

УДК 004.3(075.8)
ББК 32.973я73
 
Б72

Р е ц е н з е н т ы:
А.Л. Беломестная – кандидат технических наук, инженер-конструктор 
3-й категории ОХП ОКБ «Авиаавтоматика» Курского ОАО «Прибор»; 
А.С. Сизов – доктор технических  наук, профессор, заслуженный деятель 
науки Российской Федерации, главный научный сотрудник Научно-исследовательского 
центра (г. Курск) 18-го Центрального научно-исследовательского 
института Министерства обороны Российской Федерации

ISBN 978-5-16-015937-9 (print)
ISBN 978-5-16-108528-8 (online)

© Бобырь М.В., Титов В.С., 
Иванов В.И., Потехин В.А., 2014
© Бобырь М.В., Титов В.С., 
Иванов В.И., Потехин В.А., 
2021, с изменениями

Бобырь М.В.
Б72  
Проектирование аналоговых и цифровых устройств : учебное пособие  / 
М.В. Бобырь, В.С. Титов, В.И. Иванов, В.А. Потехин. — 2-е изд., 
перераб. и доп. – Москва : ИНФРА-М, 2022. – 245 с. — (Высшее образование: 
Бакалавриат). — DOI 10.12737/1070341.

ISBN 978-5-16-015937-9 (print)
ISBN 978-5-16-108528-8 (online)
Учебное пособие содержит материал, необходимый для формирования 
у студентов знаний основ аналоговой и цифровой схемотехники и принципов 
построения цифровых узлов, привития навыков разработки и проектирования 
цифровых устройств, а также выполнения практических работ 
и курсового проекта по дисциплине «Электротехника, электроника и схе-
мотехника».
Рассмотрены методы расчета аналоговых схем и синтеза дискретных 
устройств комбинационного типа и автоматов с памятью. Приведены примеры 
расчета аналоговых схем и реализации цифровых устройств различного 
назначения на интегральных схемах.
Соответствует требованиям федеральных государственных образовательных 
стандартов высшего образования последнего поколения.
Для студентов учреждений высшего образования, обучающихся по 
направлению подготовки 09.03.01 «Информатика и вычислительная техника». 
Может быть полезно для студентов направлений подготовки «Конструирование 
и технология электронных средств», «Биотехнические си-
стемы и технологии» и «Информационная безопасность».

УДК 004.3(075.8)
ББК 32.973я73

Предисловие

Данное учебное пособие предназначено для студентов бакалав-
риата, магистратуры и аспирантуры высших учебных заведений, обу-
чающихся по направлениям подготовки ФГОС ВО 09.03.01, 09.04.01 
и 09.06.01 «Информатика и вычислительная техника».
После изучения данного пособия студенты будут:
знать
1)  принцип создания и сопровождения информационных сис-
тем в области теории цепей и сигналов;
2)  стандарты естественно-научных и общеинженерных знаний 
электронных систем;
3)  методы наладки электронных систем;
4)  методы модернизации электронных систем;
5)  методики использования электронных систем,
уметь
1)  синтезировать методы математического анализа в области 
разработки электронных систем;
2)  настраивать электронные программные приложения;
3)  модернизировать электронные программные приложения;
4)  анализировать возможности программных средств в области 
проектирования электронных систем;
5)  определять характеристики информационных систем в обла-
сти теории цепей и сигналов,
владеть
1)  опытом моделирования электронных систем;
2)  методами наладки и настройки электронного программного 
обеспечения;
3)  методами модернизации электронного программного обес-
печения;
4)  методикой анализа электронных систем;
5)  опытом решения автоматизирующих задач в области теории 
цепей и сигналов.
Большинство современных систем обработки информации, ав-
томатики и вычислительной техники выполняется на аналоговых 
и цифровых устройствах. Поэтому знание принципов расчета анало-
говых и построения цифровых устройств различного назначения 
имеет актуальное значение и большую практическую ценность в ин-
женерной деятельности специалиста.
Материал пособия условно можно разделить на четыре части:
1) логические основы цифровых устройств;
2) проектирования дискретных устройств комбинационного 
типа;

3) проектирование дискретных устройств с памятью;
4) расчетно-графические работы по исследованию аналоговых 
устройств.
В первой главе рассмотрены логические основы построения 
цифровых устройств. Особое вниманию уделено исследованию про-
стейших логических операций и положениям булевой алгебры.
Во второй главе рассмотрены методы и приемы синтеза цифро-
вых устройств комбинационного типа. Приведены примеры проектирования 
преобразователей кодов, шифраторов, дешифраторов, 
мультиплексоров, арифметических сумматоров и вычитателей, матричных 
умножителей. Представлены варианты реализации комбинационных 
цепей на интегральных схемах. Рассмотрен один из вариантов 
проектирования цифрового устройства для реализации нечетко-
логического вывода.
В третьей главе изложены методы проектирования дискретных 
устройств с памятью. При этом особое внимание уделено вопросам, 
связанным с описанием работы различных типов тригерров. Рассмотрены 
примеры создания операционных автоматов с заданным алгоритмом 
функционирования, счетчиков с недвоичным кодированием, 
распределителей тактов на сдвиговых регистрах.
В четвертой главе рассмотрены типовые аналоговые схемы. Особое 
вниманию уделено примерам расчета электронных схем и усилительных 
каскадов на биполярных и полевых транзисторах, а также 
проектированию схем на операционных усилителях.
Пособие может быть использовано при изучении дисциплин 
«Электротехника», «Электроника» и «Схемотехника», «Основы теории 
цепей и сигналов», в частности, как руководство по курсовому 
проектированию по данным дисциплинам.
Пособие подготовлено преподавателями кафедры вычислительной 
техники Юго-Западного государственного университета — профессорами 
М.В. Бобырем, В.С. Титовым и В.И. Ивановым, а также 
преподавателем кафедры телевидения и управления Томского государственного 
университета систем управления и радиоэлектроники — 
доцентом В.А. Потехиным.
Авторы стремились изложить материал книги с учетом последних 
исследований и достижений в области аналоговой и цифровой электроники.

Учебное пособие выполнено в рамках исследований по гранту Президента 
РФ МД-707.2017.8, госзадания (Соглашение № 2.3440.2017/4.6) 
и гранта РНФ № 16-19-00186.
Авторы приносят извинения за возможные опечатки и ошибки.

Введение

Все аналоговые и цифровые устройства (ЦУ) принято разбивать 
на два класса: комбинационные цепи (КЦ) и последовательностные 
ЦУ (автоматы с памятью — АП).
Отличительные особенности этих классов ЦУ состоят в следующем. 
Для КЦ значения выходных переменных в некоторый момент 
времени определяются только значениями входных переменных 
в тот же момент времени. Для АП значения выходных переменных 
определяются не только входными переменными в данный момент, 
но и их значениями в предшествующие моменты времени. Измене-
ния значений входных переменных ЦУ происходят дискретно во вре-
мени. Временные интервалы, в течение которых эти значения сохра-
няются неизменными, называют тактами работы ЦУ.
Данное учебное пособие предназначено помочь студентам 
успешно выполнить курсовой проект. В процессе работы над курсо-
вым проектом должны быть рассмотрены и решены следующие за-
дачи:
1) синтез структуры и разработка принципиальной схемы проек-
тируемого устройства комбинационого типа; анализ быстродействия 
устройства; моделирование функционирования устройства на ком-
пьютере;
2) синтез дискретного устройства последовательностного типа 
с памятью на статических триггерах выбранного типа; анализ устой-
чивости и способности самовосстановления после сбоя.
Элементной базой современных цифровых устройств и систем 
являются цифровые интегральные схемы. Номенклатура выпускае-
мых промышленностью цифровых ИС достаточно обширна, и, сле-
довательно, весьма разнообразны реализуемые ими функции пре -
образования. Простейшие преобразования над цифровыми сигна-
лами осуществляют цифровые ИС, получившие названия логических 
элементов (ЛЭ).
Для описания работы цифровых ИС, а следовательно, 
и устройств, построенных на их основе, используется математиче-
ский аппарат алгебры логики (булевой алгебры). Возможность при-
менения булевой алгебры для решения задач анализа и синтеза циф-
ровых устройств обусловлена аналогией понятий и категорий этой 
алгебры и двоичной системы счисления, которая положена в основу 
представления преобразуемых устройством сигналов.
Расчет аналоговых устройств и курсовое проектирование явля-
ются значительным этапом в изучении основ электроники и схемо-
техники ЭВМ и принципов построения цифровых устройств. Работа 

по решению расчетно-графических работ по электронике и над про-
ектом направлена на приобретение практических навыков разработ-
ки и проектирования цифро-аналоговых устройств.
Тематика практических работ и курсового проекта по дисципли-
нам «Электротехника», «Электроника» и «Схемотехника» направлений 
подготовки бакалавров, магистров и аспирантов 09.03.01, 
09.04.01 и 09.06.01 «Информатика и вычислительная техника» охватывает 
основные разделы этой дисциплины. Цель расчетно-графических 
работ и проекта заключается в анализе работы аналоговых 
устройств и выполнении схемотехнического проектирования дискретных 
устройств на интегральных схемах (ИС), выполняющих заданные 
функции преобразования цифровой информации. Также 
в данном учебном пособии рассмотрены вопросы, связанные с проектированием 
цифровых устройств для реализации нечетко-логических 
операций, а именно нечетко-логического вывода. При этом 
объектом курсового проектирования являются арифметико-логические 
узлы комбинационного типа и синхронные последовательност-
ные схемы, содержащие элементы памяти. Успешное решение задач, 
представленных в учебном пособии, позволит студенту:
1) систематизировать, закрепить теоретические знания в области 
электроники и схемотехники ЭВМ;
2) развить практические навыки по синтезу аналоговых и цифровых 
устройств;
3) приобрести опыт инженерного расчета аналоговых и цифровых 
устройств, выполняемых на базе ИС;
4) освоить правила выполнения принципиальных схем аналоговых 
и цифровых устройств, оформления текстовых и графических 
материалов.

Глава 1.  ЛОГИЧЕСКИЕ ОСНОВЫ ЦИФРОВЫХ 
УСТРОЙСТВ

1.1. 
ОБЩИЕ ПОЛОЖЕНИЯ

Математический аппарат, описывающий действие дискретных 
устройств, базируется на алгебре логики, автором которой считается 
английский математик Дж. Буль (1815–1864). В практических целях 
первым применил его американский ученый К. Шеннон в 1938 г. 
при исследовании электрических цепей с контактными выключателями.

Булева алгебра оперирует двоичными переменными (logic values), 
которые условно обозначают как 0 и 1 и называют двоичной цифрой 
(binary digit), или битом (bit).
В ее основе лежит понятие переключательной, или булевой, 
функции вида 
−
−
1
2
1
0
(
,
,...,
,
)
n
n
f x
x
x x
 относительно аргумен тов 

−
−
1
2
1
0
,
,...,
,
n
n
x
x
x x , которая также может принимать лишь два значения — 
0 и 1. Логическая функция может быть задана словесно, алгебраическим 
выражением и таблицей, которая называется таблицей 
истинности (truth table). Аналитический способ предусматривает 
запись функции в форме логического выражения, показывающего, 
какие логические операции над аргументами функции должны вы-
полняться и в какой последовательности. Сложные функции от мно-
гих аргумен тов (переменных) могут быть представлены в форме 
функций от функций, последние из которых выражаются через 
меньшее число аргумен тов. Следует отметить, что для обозначения 
аргумен тов используются наиболее популярные знаки латинского, 
греческого и русского алфавитов.
В булевой алгебре различают положительную и отрицательную 
логику. В положительной логике (positive logic) логической единице 
(лог. 1) соответствует высокий уровень напряжения — H (High), ло-
гическому нулю (лог. 0) — низкий уровень — L (Low). Отрицательная 
логика (negative logic) используется нечасто, и в ней, естественно, 
противоположные соответствия логических уровней: 1 — низкий 
уровень, 0 — высокий уровень.
При табличном задании функции (state table) в строках таблицы 
записываются возможные двоичные значения аргумен тов 

−
−
1
2
1
0
,
,...,
,
n
n
x
x
x x  и указываются значения функции 
− −
1
0
(
)
n
f x
x , ко-
торые она принимает на данном наборе (лог. 0 или лог. 1). При числе 
аргумен тов n максимальное число различных состояний в таблице 
составляет 2n.

В этой главе мы узнаем, как переходить от таблицы истинности 
к логическому выражению, от логического выражения — к функцио-
нальной (принципиальной) схеме (задача синтеза) и наоборот (зада-
ча анализа).

1.2. 
ПРОСТЕЙШИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ

В алгебре логики имеются три простейшие логические операции: 
отрицание (инверсия, операция НЕ), логическое сложение 
(дизъюнк ия, операция ИЛИ), логическое умножение (конъюнкция, 
операция И). Эти операции выполняются на логических схемах, 
именуемых логическими вентилями.

Инверсия

Операция отрицания (NOT gate) выполняется над одним аргумен-
том или функцией и изображается чертой над аргументом (перемен-
ной) или функцией: 
=
− (
),
( , )
не
y
x
x
f a b  обозначает (не ( , )
f a b ). Та-
ким образом, инверсия единицы равна нулю, инверсия нуля — еди-
нице, а двойная инверсия не изменяет значение переменной:

=
=
=
=
=
1,
0,
0,
1,
.
a
a
a
a
a
a

Таблица истинности инвертора для одного аргумента дана 
на рис. 1.1, а. Операция инвертирования сигнала на условном гра-
фическом обозначении (УГО) показывается кружком на выводе вы-
ходного сигнала (inversion bubble), как изображено на рис. 1.1, б; эпю-
ры напряжений входного и выходного сигналов приведены 
на рис. 1.1, в.

Логическое НЕ

x
у х

0
1

1
0

у х
x

x 0
0
0

0
0

1
1

1
1
1
х

а
б

в

1

Рис. 1.1. Таблица истинности инвертора (а), условное 
графическое обозначение (б), диаграммы напряжений (в)

Инверторы как ключевые усилительные элемен ты используются 
практически во всех цифровых интегральных микросхемах. Как са-

мостоятельные изделия, они широко применяются в качестве согласующих 
каскадов в выходных и входных цепях радиоэлектронных 
устройств.

Дизъюнкция

Под дизъюнкцией понимается логическое сложение сигналов 
двух или нескольких переменных (операция логическое ИЛИ — OR 
gate). Логическая сумма двух переменных а и b равна лог. 1, если значения 
или a, или b равны лог. 1. Обозначают дизъюнкцию знаком + 
(плюс) или символом ˅ (от лат. vel — или), например: y  a + b либо 
y  a ˅ b. Второй способ более предпочтителен, так как позволяет 
отличить логическое сложение от арифметического.
Для двух переменных справедливы следующие соотношения:

∨
=
∨
=
∨
=
∨
=
0
0
0,0
1
1,1
0
1,1
1
1,

т.е. равенство хотя бы одного аргумента логической единице определяет 
единичное значение всей функции (рис. 1.2, а). Лишь в един-
ственном случае, когда оба аргумента равны нулю, выходная функция 
также равна нулю.
На функцио нальных схемах дизъюнктор обозначается цифрой 1 
в правом верхнем углу (рис. 1.2, б). Эпюры напряжений входного 
и выходного сигналов дизъюнктора приведены на рис. 1.2, в.

Логическое ИЛИ

b
a
a ˅ b

0
0
0

0
1
1

1
0
1

1
1
1

a
a

b

b

а
в
б

1
a ˅ b

a ˅ b

Рис. 1.2. Таблица истинности дизъюнктора (а), условное графическое 
обозначение (б), диаграммы напряжений (в)

Конъюнкция

Под конъюнкцией понимается логическое умножение сигналов 
двух или нескольких переменных (операция логическое И — AND 
gate). Конъюнкция переменных a и b равна лог. 1 в том случае, когда 
и a и b равны лог. 1. Операция И в буквенных выражениях обозначается 
точкой (·), символом ˄ или никак не обозначается:

=
⋅
=
.
y
a b
ab

Для двух переменных справедливы следующие соотношения:

∧
=
∧
=
∧
=
∧
=
0
0
0,0
1
1,1
0
1,1
1
1,

т.е. равенство хотя бы одного аргумента логическому нулю определяет 
нулевое значение всей функции (рис. 1.3, а). Лишь в одном случае, 
когда оба аргумента имеют высокий уровень (H), функция получает 
единичное значение.
На функцио нальной схеме логическое И обозначается знаком & 
в правом верхнем углу, как показано на рис. 1.3, б.
Эпюры напряжений, поясняющие работу вентиля И, приведены 
на рис. 1.3, в.

Логическое И

b
a
a ˄ b

0
0
0

0
1
0

1
0
0

1
1
1

a
a

b

b

а
в
б

&

y = a ˄ b

y = a ˄ b

Рис. 1.3. Таблица истинности конъюнктора (а), условное графическое 
обозначение (б), диаграммы напряжений (в)

1.3. 
ОСНОВНЫЕ ПОЛОЖЕНИЯ АЛГЕБРЫ ЛОГИКИ

Основные законы алгебры логики

В алгебре логики имеются четыре основных закона.
1. Переместительный, или закон коммутативности, для опера-
ций сложения и умножения:
∨
=
∨
=

;

.
A
B
B
A
AB
BA

2. Сочетательный, или закон ассоциативности, для сложения 
и умножения:

∨
∨
=
∨
∨

=

(
)
(
);

(
)
(
).

A
B
C
A
B
C

AB C
A BC

3. Распределительный, или закон дистрибутивности, для сложе-
ния и умножения:

∨
∨
=
∨
⋅

∨
=
∨
∨

(
)
;

(
)
(
)(
).

A
B
C
AC
B C

AB
C
A
C
B
C

Доступ онлайн
296 ₽
от 252 ₽
В корзину