Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Критерии проверки гипотез об однородности. Руководство по применению

Покупка
Основная коллекция
Артикул: 645799.03.01
К покупке доступен более свежий выпуск Перейти
Книга рассчитана на специалистов, в той или иной степени сталкивающихся в своей деятельности с вопросами статистического анализа данных, обработкой результатов экспериментов, применением статистических методов для анализа различных аспектов и тенденций окружающей действительности. В руководстве рассматриваются вопросы применения статистических критериев, ориентированных на проверку гипотез об однородности законов, которым принадлежат анализируемые выборки, средних (о равенстве математических ожиданий), дисперсий (о равенстве дисперсий сравниваемых выборок). Указываются недостатки и преимущества различных критериев, рассматривается применение критериев в условиях нарушения стандартных предположений. Приводятся таблицы, содержащие процентные точки и модели распределений статистик, необходимые для корректного применения критериев. Следование рекомендациям обеспечит корректность и повысит обоснованность статистических выводов при анализе данных. Книга будет полезна инженерам, научным сотрудникам, специалистам различного профиля (медикам, биологам, социологам, экономистам и др.), сталкивающимся в своей деятельности с необходимостью статистического анализа результатов экспериментов. Руководство будет полезно преподавателям вузов, аспирантам и студентам.
81
Лемешко, Б. Ю. Критерии проверки гипотез об однородности. Руководство по применению : монография / Б.Ю. Лемешко. — Москва : ИНФРА-М, 2018. — 207 с. — (Научная мысль). — www.dx.doi.org/10.12737/22368. - ISBN 978-5-16-012557-2. - Текст : электронный. - URL: https://znanium.com/catalog/product/944443 (дата обращения: 23.11.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов
Москва
ИНФРА-М
2018

КРИТЕРИИ ПРОВЕРКИ 
ГИПОТЕЗ ОБ ОДНОРОДНОСТИ 

РУКОВОДСТВО ПО ПРИМЕНЕНИЮ

Á.Þ. ËÅÌÅØÊÎ 

МОНОГРАФИЯ

Лемешко Б.Ю.
Л44 
 
Критерии проверки гипотез об однородности. Руководство по 
применению : монография / Б.Ю. Лемешко. — М. : ИНФРА-М, 
2018. — 207 с. — (Научная мысль). — www.dx.doi.org/10.12737/22368.

ISBN 978-5-16-012557-2 (print)
ISBN 978-5-16-105463-5 (online)

Книга рассчитана на специалистов, в той или иной степени сталкивающихся 
в своей деятельности с вопросами статистического анализа данных, обработкой 
результатов экспериментов, применением статистических методов для анализа 
различных аспектов и тенденций окружающей действительности. 
В руководстве рассматриваются вопросы применения статистических 
критериев, ориентированных на проверку гипотез об однородности законов, 
которым принадлежат анализируемые выборки, средних (о равенстве математических ожиданий), дисперсий (о равенстве дисперсий сравниваемых 
выборок). Указываются недостатки и преимущества различных критериев, 
рассматривается применение критериев в условиях нарушения стандартных 
предположений.
Приводятся таблицы, содержащие процентные точки и модели распределений статистик, необходимые для корректного применения критериев.
Следование рекомендациям обеспечит корректность и повысит обоснованность статистических выводов при анализе данных. 
Книга будет полезна инженерам, научным сотрудникам, специалистам различного профиля (медикам, биологам, социологам, экономистам и др.), сталкивающимся в своей деятельности с необходимостью статистического анализа 
результатов экспериментов. Руководство будет полезно преподавателям вузов, 
аспирантам и студентам.
УДК 519.2(075.4)
ББК 22.172

УДК 519.2(075.4)
ББК 22.172
 
Л44

©  Лемешко Б.Ю., 2017
ISBN 978-5-16-012557-2 (print)
ISBN 978-5-16-105463-5 (online)

Р е ц е н з е н т ы: 
А.А. Попов — д-р техн. наук, профессор;
В.А. Селезнев — д-р физ.-мат. наук, профессор

Подписано в печать 04.10.2017.
Формат 60×90/16. Печать цифровая. Бумага офсетная.
Гарнитура Newton. Усл. печ. л. 12,94. ППТ30. Заказ  № 00000

ТК 645799-944443-081116

ООО «Научно-издательский центр ИНФРА-М»
127282, Москва, ул. Полярная, д. 31В, стр. 1.
Тел.: (495) 280-15-96, 280-33-86.     Факс: (495) 280-36-29.
E-mail: books@infra-m.ru                 http: //www.infra-m.ru

ФЗ 
№ 436-ФЗ
Издание не подлежит маркировке 
в соответствии с п. 1 ч. 2 ст. 1

Отпечатано в типографии ООО «Научно-издательский центр ИНФРА-М»
127282, Москва, ул. Полярная, д. 31В, стр. 1
Тел.: (495) 280-15-96, 280-33-86. Факс: (495) 280-36-29

Оглавление

Предисловие ......................................................................................5
Введение .............................................................................................8
1. Общие сведения о проверке статистических гипотез .........11
2. Критерии проверки однородности законов
распределения .................................................................................18

2.1.
Критерий Смирнова .......................................................... 20

2.2.
Критерий Лемана – Розенблатта ...................................... 29

2.3.
Критерий Андерсона – Дарлинга ..................................... 35

2.4.
Многовыборочный критерий Андерсона – Дарлинга ... 40

2.5.
Примеры применения ....................................................... 47

2.6.
Выводы по разделу ............................................................ 50

3. Критерии проверки однородности средних ..........................52

3.1.
Параметрические критерии однородности средних ...... 53

3.1.1.
Критерий сравнения двух выборочных средних при

известных дисперсиях .................................................................... 53
3.1.2.
Критерий Стьюдента......................................................... 54

3.1.3.
Критерий сравнения двух выборочных средних при

неизвестных и неравных дисперсиях ............................................ 54
3.1.4.
F-критерий однородности средних ................................. 57

3.1.5.
Об устойчивости параметрических критериев ............... 58

3.2.
Непараметрические критерии однородности средних .. 62

3.2.1.
Критерии Уилкоксона и Манна – Уитни. ....................... 62

3.2.2.
Критерий Краскела – Уаллиса ......................................... 64

3.2.3.
Критерий Ван дер Вардена ............................................... 65

3.2.4.
Критерий Фишера – Йейтса – Терри – Гёфдинга ........... 67

3.2.5.
Многовыборочный критерий Ван дер Вардена .............. 68

3.3.
Сравнительный анализ мощности критериев ................. 69

3.4.
Выводы по разделу ............................................................ 79

4. Критерии проверки однородности дисперсий ......................81

4.1.
Критерий Бартлетта .......................................................... 84

4.2.
Критерий Кокрена ............................................................. 88

4.3.
Критерий Хартли ............................................................... 90

4.4.
Критерий Левене ............................................................... 92

4.5.
Критерий Фишера ............................................................. 98

4.6.
Критерий Неймана – Пирсона.......................................... 99

4.7.
Критерий О’Брайена. ...................................................... 102

4.8.
Критерий Линка .............................................................. 105

4.9.
Критерий Ньюмана ......................................................... 106

4.10.
Критерий Блиса – Кокрена – Тьюки .............................. 108

4.11.
Критерий Кадуэлла – Лесли – Брауна ........................... 110

4.12.
Z-критерий Оверолла – Вудворда.................................. 112

4.13.
Модифицированный Z-критерий ................................... 113

4.14.
Критерий Ансари – Бредли ............................................ 116

4.15.
Критерий Муда ................................................................ 118

4.16.
Критерий Сиджела – Тьюки ........................................... 119

4.17.
Критерий Клотца ............................................................. 121

4.18.
Критерий Кейпена ........................................................... 123

4.19.
k-выборочный критерий Флайне – Киллина................. 125

4.20.
Сравнительный анализ мощности критериев ............... 128

4.21.
Мощность критериев при нарушении предположения

о нормальности ............................................................................. 138
4.22.
Критерий Кокрена при законах, отличных от

нормального .................................................................................. 144
4.23.
Что надо учитывать при выборе критерия однородности

дисперсий? ..................................................................................... 145
4.24.
О вычислении достигнутого уровня значимости ......... 147

4.25.
Применение критериев в «нестандартных»  

условиях ......................................................................................... 149
4.26.
Выводы по разделу ......................................................... 154

Заключение ....................................................................................158
Библиографический список .......................................................159
Приложение А ...............................................................................166

Предисловие

Необходимость проверки гипотез об однородности законов рас
пределения вероятностей, об однородности средних или однородности дисперсий очень часто возникает в различных приложениях, когда хотят убедиться в неизменности (или, наоборот, в изменении) 
статистических свойств некоторого объекта, процесса и т.п. после
целенаправленного изменения фактора или факторов (методики, технологии и т.д.), неявным образом влияющих на исследуемый объект. 
В прикладной математической статистике накопился достаточно обширный арсенал критериев (параметрических и непараметрических), 
предназначенных для проверки гипотез того или иного вида. 

В качестве критериев проверки однородности законов в случае

анализа двух выборок могут использоваться критерии Смирнова, Лемана – Розенблатта, Андерсона – Дарлинга – Петитта, типа
2
χ . При

большем
числе
сравниваемых
выборок
могут
применяться
k
выборочные варианты критериев. 

Для проверки гипотез об однородности средних могут использо
ваться классические критерии (варианты критерия Стьюдента и Fкритерий), в основе которых лежит предположение о принадлежности выборок нормальным законам, или применяться непараметрические критерии, свободные от этого предположения (Уилкоксона, 
Манна – Уитни, Краскела – Уаллиса и др.). 

Арсенал критериев, ориентированных на проверку гипотез об од
нородности
дисперсий, наиболее
внушительный. Это
длинный

и, возможно, неполный ряд параметрических критериев (Бартлетта, 
Кокрена, Фишера, Хартли, Левене, Неймана – Пирсона, О’Брайена, 
Линка, Ньюмана, Блисса – Кокрена – Тьюки, Кадуэлла – Лесли –
Брауна, Z-критерий Оверолла – Вудворда, модифицированный Zкритерий), в обосновании которых решающая роль принадлежит
стандартному предположению о принадлежности анализируемых выборок нормальным законам. Это достаточно представительный перечень непараметрических критериев, предназначенных для проверки
однородности характеристик рассеяния (Ансари – Бредли, Муда, Сиджела – Тьюки, Кейпена, Клотца, Флайне – Киллина). 

Применяемое множество критериев создавалось на протяжении

практически столетия интенсивного развития математической статистики. Однако до сих пор не сформировалось устойчивого мнения
о том, какие из этого множества критериев наиболее предпочтительны при проверке соответствующих гипотез? Какие критерии обладают большей мощностью? Какие достоинства или недостатки связаны
с отдельными критериями? 

Давно известно, что параметрические критерии проверки одно
родности средних достаточно устойчивы к нарушению стандартного
предположения о нормальности. Выводы могут оставаться корректными при значительных отклонениях наблюдаемого закона от нормального. Однако у устойчивости параметрических критериев есть
вторая сторона медали: их преимущество в мощности по сравнению
с непараметрическими критериями весьма незначительно. 

В свою очередь параметрические критерии проверки однородно
сти дисперсий, за редким исключением, чрезвычайно чувствительны
к малейшим отклонениям от нормальности, что негативно отражается
на корректности статистических выводов. В то же время в основной
массе параметрические критерии имеют заметное преимущество
в мощности
перед
непараметрическими. Причём
преимущество

в мощности сохраняется за параметрическими критериями и в условиях нарушения предположения о нормальности (если только выборки не принадлежат законам с тяжёлыми хвостами). По этой причине
очень желательно иметь возможность корректного применения параметрических критериев в условиях нарушения стандартного предположения о нормальности. Для реализации такой возможности необходимо лишь знание распределений статистик критериев в таких нестандартных условиях, что в настоящее время благодаря использованию компьютерных технологий и имитационного моделирования
отнюдь не является неразрешимой задачей. 

Данное руководство подготовлено с учетом наших исследований, 

проведенных
в предшествующих
работах
и непосредственно
при

формировании его содержания. Исследования позволили провести
сравнительный анализ мощности групп критериев относительно различных альтернатив, позволили указать на нюансы применения или

существенные недостатки некоторых критериев, проявляющиеся при
проверке гипотез.  

Нельзя утверждать, что в каждом из разделов настоящего руко
водства проанализированы абсолютно все существующие критерии, 
предназначенные для проверки гипотез определённого вида, повидимому, наиболее упоминаемые и чаще используемые. И всё-таки
хочется надеяться, что настоящая книга, как и предшествующие [69, 
72, 73, 94], окажет реальную помощь специалистам, заинтересованным в корректности проводимого статистического анализа. 

Я очень признателен своим коллегам и ученикам (С.Б. Лемешко, 

А.А. Горбуновой, 
Т.С. Сатаевой), 
внёсшим
заметный
вклад

в уточнение знаний о свойствах критериев, что позволило подготовить
данное руководство. 

Значительная часть исследований, способствующих подготовке ру
ководства, проведена
при
поддержке
Министерства
образования

и науки РФ в рамках выполнения государственной работы «Обеспечение проведения научных исследований» и проектной части государственного задания (проект № 2.541.2014К).  

Б.Ю. Лемешко

Июль 2016 

Введение

Необходимость в проверке гипотез об однородности выборок слу
чайных величин очень часто возникает в различных приложениях при
решении задач статистического анализа результатов экспериментальных исследований.  

При этом речь может идти или о проверке гипотез об од
нородности законов распределения вероятностей, соответствующих
анализируемым выборкам, или об однородности математических ожиданий, или об однородности дисперсий. Естественно, что наиболее
полные выводы могут быть получены на основании решения первой
задачи. Однако исследователя в большей степени может интересовать
ответ на вопрос об отсутствии (наличии) возможных отклонений
в средних значениях анализируемых выборок или в характеристиках
рассеяния результатов измерений. 

Задача проверки гипотезы об однородности законов, соответству
ющих k выборкам, формулируется следующим образом. Имеется k
выборок

1
11
12
1
,
, ...,
n
x
x
x
,  
2
21
22
2
,
, ...,
,
n
x
x
x
K,  
1
2
,
, ...,
,
k
k
k
kn
x
x
x

где ni – объём i-й выборки, 
1,
i
k
=
. Проверяется гипотеза о том, что все

выборки извлечены из одной и той же генеральной совокупности, т.е.  

1
H : 
1
2
( )
( )
( )
( )
k
F x
F x
F x
F x
=
=
=
=
K

при любом x. Конкурирующая гипотеза может иметь вид

1
H : 
( )
( )
i
j
F x
F x
≠

для некоторых
, ,
i
j i j
k
≠
≤
.  

Как правило, критерии проверки гипотезы об однородности зако
нов непараметрические. 

При проверке гипотезы об однородности средних (о равенстве ма
тематических ожиданий) предполагается, что анализируемые выборки
принадлежат какому-то одному закону: неизвестному в случае непара
метрических критериев и известному в случае параметрических. Проверяемая гипотеза имеет вид

0
1
2
:
k
H
µ = µ =
= µ
L

при конкурирующей гипотезе

1
2
1:
,
i
i
H
µ ≠ µ

где неравенство выполняется хотя бы для некоторой пары индексов i1, i2.  

Для проверки гипотез о равенстве математических ожиданий мо
жет использоваться ряд параметрических критериев, применение которых, 
как
правило, 
опирается
на
стандартное
предположение

о принадлежности
анализируемых
выборок
нормальным
законам, 

а также непараметрические критерии, свободные от этого предположения. В то же время следует иметь в виду, что применение непараметрических критериев базируется на предположении, что законы, которым принадлежат сравниваемые выборки, могут отличаться только
параметрами сдвига. 

В критериях проверки однородности дисперсий проверяемая гипо
теза о постоянстве дисперсий k выборок имеет вид

2
2
2

0
1
2
: 
...
,
k
H
σ
= σ
=
= σ

а конкурирующая с ней гипотеза

1
2

2
2

1: 
,
i
i
H
σ
≠ σ

где неравенство выполняется, по крайней мере, для одной пары индексов 1
2
,
i i .  
Для проверки такого рода гипотез может использоваться значи
тельный перечень классических параметрических критериев. Обоснованное применение этих критериев требует выполнения стандартного
предположения о принадлежности анализируемых выборок нормальному закону.  

В случае непараметрических аналогов речи о принадлежности вы
борок нормальным законам не идёт. Однако предполагается, что анализируемые выборки принадлежат пусть неизвестному, но одному

и тому же виду закона с одинаковыми математическими ожиданиями. 
Именно тогда обеспечивается корректность применения критериев. 

У исследователя, стоящего перед проблемой выбора критерия, не
смотря на обилие публикаций, возникает множество вопросов, так как
остается не ясным, в каких случаях применение какого критерия предпочтительней.  

В случае критериев проверки гипотез об однородности законов

распределений, перечень которых достаточно узок, специалиста может
интересовать, насколько хорошо при ограниченных объёмах выборок
распределения статистик описываются предельными распределениями? Или какой из критериев является более мощным (лучше распознаёт альтернативы)? 

Такие же вопросы возникают относительно критериев проверки

гипотез о средних, где мы имеем множество критериев (параметрических
и непараметрических), но
нет
четких
указаний
и сведений

о преимуществе тех или иных, например, о степени устойчивости параметрических критериев к отклонениям от стандартного предположения о нормальности, о результатах сравнения мощности параметрических и непараметрических критериев. Отсутствие указаний не позволяет в конкретной ситуации выбрать наиболее мощный критерий. По
некоторым параметрическим критериям проверки гипотез о средних
имеется информация об относительной устойчивости распределений
статистик к отклонениям наблюдаемого закона от нормального [85, 
82]. По другим критериям это требует дополнительных исследований. 

Параметрические критерии проверки гипотез о дисперсиях, наобо
рот, весьма чувствительны к любым отклонениям от предположений, 
в условиях которых они были получены. И также отсутствует или противоречива информация о мощности соответствующих критериев [63, 
83, 28]. 

Множества
критериев, 
построенных
для
проверки
гипотез

о равенстве математических ожиданий или о равенстве дисперсий, заметно шире множества критериев проверки однородности законов. 
Поэтому проблема выбора наиболее предпочтительного критерия стоит более остро. Особенно важна объективная информация относительно свойств критериев проверки гипотез об однородности дисперсий
(об однородности характеристик рассеяния). 

К покупке доступен более свежий выпуск Перейти