Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Базовые разделы математики для бакалавров в среде MATLAB

Покупка
Основная коллекция
Артикул: 626735.01.99
В учебном пособии изложены базовые разделы математики для бакалавров, ориен- тированных на изучение и моделирование социально-экономических процессов. В каче-стве среды изложения используется пакет прикладных программ MATLAB. Курс включа-ет 22 семинарских занятия, которые приготовлены в самодостаточной форме, т.е. они включают как теоретическую, так и практическую составляющие в изложении материала. Весь курс можно поделить на три части. Первая часть называется “Линейная алгебра и геометрия” (семинары №1 — №8). Во второй части курса излагаются основы “Математи-ческого анализа” (семинары №9 — №14). Наконец, третья часть курса посвящена знаком-ству с основами “Теории вероятностей” (семинары №15 — №22). В папке “Приложение к учебному пособию “Плохотников К.Э. Базовые разделы математики в среде MATLAB” сосредоточены 282 MATLAB-файла учебных программ, разнесенных по 22- м папкам семинарских занятий. Данную папку можно скачать с сайта издательства. Коды всех программ представлены также в текстах семинарских занятий. Особенностью курса является активное использование изобразительных и вычислитель-ных возможностей пакета MATLAB в целях овладения студентами навыками решения различного рода математических задач. Данный курс лекций ориентирован на бакалавров, в перечень обучения которых входит дисциплина “Математика”. Он также может оказаться полезным для магистров, желающих расширить свои знания по линейной алгебре и геометрии, математическому анализу и теории вероятностей, опираясь на пакет прикладных программ MATLAB.
Плохотников, К. Э. Базовые разделы математики для бакалавров в среде MATLAB [Электронный ресурс] / К. Э. Плохотников. - Москва : Инфра-М; Вузовский Учебник; Znanium.com, 2014. - 571 с. - ISBN 978-5-16-102366-2 (online). - Текст : электронный. - URL: https://znanium.com/catalog/product/496199 (дата обращения: 22.11.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов
К. Э. Плохотников

Базовые разделы математики для 

бакалавров в среде MATLAB

Учебное пособие

Москва

Инфра-М; Вузовский Учебник

2014

К. Э. Плохотников

Базовые разделы математики для 

бакалавров в среде MATLAB

Москва

Инфра-М; Вузовский Учебник; Znanium.com

2014

Плохотников К. Э.

Базовые разделы математики для бакалавров в среде MATLAB / К. Э. 

Плохотников. – М.: Инфра-М; Вузовский Учебник; Znanium.com, 2014. – 571 с.

ISBN 978-5-16-102366-2 (online)

В учебном пособии изложены базовые разделы математики для бакалавров, ориентированных на изучение и моделирование социально-экономических процессов. В каче-стве 
среды изложения используется пакет прикладных программ MATLAB. Курс включа-ет 22 
семинарских занятия, которые приготовлены в самодостаточной форме, т.е. они включают как 
теоретическую, так и практическую составляющие в изложении материала. Весь курс можно 
поделить на три части. Первая часть называется “Линейная алгебра и геометрия” (семинары 
№1 — №8). Во второй части курса излагаются основы “Математи-ческого анализа” (семинары 
№9 — №14). Наконец, третья часть курса посвящена знаком-ству с основами “Теории 
вероятностей” (семинары №15 — №22). 
В папке “Приложение к учебному пособию “Плохотников К.Э. Базовые разделы математики в 
среде MATLAB” сосредоточены 282 MATLAB-файла учебных программ, разнесенных по 22м папкам семинарских занятий. Данную папку можно скачать с сайта издательства. Коды всех 
программ представлены также в текстах семинарских занятий. Особенностью курса является 
активное использование изобразительных и вычислитель-ных возможностей пакета MATLAB 
в целях овладения студентами навыками решения различного рода математических задач. 
Данный курс лекций ориентирован на бакалавров, в перечень обучения которых входит 
дисциплина “Математика”. Он также может оказаться полезным для магистров, желающих 
расширить свои знания по линейной алгебре и геометрии, математическому анализу и теории 
вероятностей, опираясь на пакет прикладных программ MATLAB.

ISBN 978-5-16-102366-2 (online)
Плохотников К. Э., 2014

Плохотников К.Э. Базовые разделы математики для бакалавров в среде MATLAB

— 3 —

ОГЛАВЛЕНИЕ

СЕМИНАР №1....................................................................................................... 8

АЛГЕБРА И ГЕОМЕТРИЯ: МАТРИЦЫ. ОПРЕДЕЛИТЕЛИ ..............................8

§1. Определение матриц...........................................................................................................8
§2. Операции над матрицами.................................................................................................12
§3. Определитель квадратной матрицы................................................................................18
§4. Свойства определителя ....................................................................................................22
§5. Дополнительные задачи ...................................................................................................25

СЕМИНАР №2..................................................................................................... 28

АЛГЕБРА И ГЕОМЕТРИЯ: ВЕКТОРНАЯ АЛГЕБРА .....................................................28

§1. Линейные операции с векторами ....................................................................................28
§2. Координаты вектора .........................................................................................................32
§3. Скалярное произведение векторов..................................................................................34
§4. Вектор в трехмерном пространстве ................................................................................36
§5. Линейное векторное пространство .................................................................................37
§6. Линейная зависимость (независимость) векторов.........................................................40
§7. Ранг матрицы.....................................................................................................................43
§8. Дополнительные задачи ...................................................................................................45

СЕМИНАР №3..................................................................................................... 52

АЛГЕБРА И ГЕОМЕТРИЯ: ОБРАТНАЯ МАТРИЦА ......................................................52

§1. Обратная матрица .............................................................................................................52
§2. Теорема об обратной матрице .........................................................................................53
§3. Блочные (клеточные) матрицы........................................................................................59
§4. Способы нахождения обратной матрицы.......................................................................65
§5. Дополнительные задачи ...................................................................................................70

СЕМИНАР №4..................................................................................................... 75

АЛГЕБРА И ГЕОМЕТРИЯ: СИСТЕМА ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ 
УРАВНЕНИЙ.............................................................................................................................75

§1. Система линейных алгебраических уравнений .............................................................75
§2. Нахождение единственного решения .............................................................................76
§3. Нахождение решения с помощью блочной матрицы....................................................79
§4. Нахождение решения с помощью формул Крамера .....................................................81
§5. Общий подход к решению систем линейных уравнений .............................................84
§6. Дополнительные задачи ...................................................................................................93

СЕМИНАР №5..................................................................................................... 97

АЛГЕБРА И ГЕОМЕТРИЯ: СИСТЕМА ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ 
УРАВНЕНИЙ. II........................................................................................................................97

§1. Базисные решения системы уравнений ..........................................................................97
§2. Однородные системы уравнений ....................................................................................99
§3. Фундаментальные решения ...........................................................................................101

Плохотников К.Э. Базовые разделы математики для бакалавров в среде MATLAB

— 4 —

§4. Общее решение неоднородной системы уравнений ...................................................104
§5. Модель многоотраслевой экономики Леонтьева.........................................................106
§6. Размерность и базис векторного пространства............................................................111
§7. Дополнительные задачи .................................................................................................118

СЕМИНАР №6................................................................................................... 124

АЛГЕБРА И ГЕОМЕТРИЯ: ЛИНЕЙНЫЕ ПРОСТРАНСТВА И 
ПРЕОБРАЗОВАНИЯ..............................................................................................................124

§1. Линейные подпространства...........................................................................................124
§2. Евклидовы пространства................................................................................................130
§3. Ортонормированная система векторов.........................................................................132
§4. Линейные операторы......................................................................................................135
§5. Собственные векторы и значения линейного оператора............................................139
§6. Дополнительные задачи .................................................................................................145

СЕМИНАР №7................................................................................................... 151

АЛГЕБРА И ГЕОМЕТРИЯ: ЛИНИИ НА ПЛОСКОСТИ...............................................151

§1. Уравнение линии на плоскости.....................................................................................151
§2. Уравнение прямой ..........................................................................................................154
§3. Некоторые совместные свойства пары прямых...........................................................162
§4. Окружность и эллипс .....................................................................................................167
§5. Дополнительные задачи .................................................................................................171

СЕМИНАР №8................................................................................................... 176

АЛГЕБРА И ГЕОМЕТРИЯ: ЛИНИИ НА ПЛОСКОСТИ.II ..........................................176

§1. Гипербола ........................................................................................................................176
§2. Парабола ..........................................................................................................................185
§3. Кривые в полярной системе координат........................................................................188
§4. Иные поименованные кривые .......................................................................................192
§5. Дополнительные задачи .................................................................................................196

СЕМИНАР №9................................................................................................... 204

МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ .........204

§1. Ретроспектива расширения множества используемых чисел ....................................204
§2. Вещественные числа.......................................................................................................209
§3. Предел последовательности ..........................................................................................213
§4. Предел монотонной последовательности.....................................................................217
§5. Операции с последовательностями...............................................................................220
§6. Дополнительные задачи .................................................................................................225

СЕМИНАР №10................................................................................................. 233

МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ФУНКЦИЯ ОДНОЙ ПЕРЕМЕННОЙ ..................233

§1. Понятие функции............................................................................................................233
§2. Способы задания функции.............................................................................................238
§3. Элементарные функции .................................................................................................243
§4. Предел функции..............................................................................................................244

Плохотников К.Э. Базовые разделы математики для бакалавров в среде MATLAB

— 5 —

§5. Бесконечно малые и бесконечно большие функции ...................................................248
§5. Непрерывность функции в точке ..................................................................................251
§6. Дополнительные задачи .................................................................................................255

СЕМИНАР №11................................................................................................. 264

МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ПРОИЗВОДНАЯ И ДИФФЕРЕНЦИАЛ...............264

§1. Определение производной.............................................................................................264
§2. Производные простейших функций .............................................................................266
§3. Дифференциал функции.................................................................................................268
§4. Геометрический смысл производной............................................................................271
§5. Физический смысл производной...................................................................................273
§6. Правила вычисления производных...............................................................................278
§7. Производная и дифференциал сложной функции.......................................................284
§8. Таблица производных основных функций...................................................................286
§9. Дополнительные задачи .................................................................................................286

СЕМИНАР №12................................................................................................. 293

МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ПРОИЗВОДНАЯ ФУНКЦИИ. II............................293

§1. Теорема Ферма................................................................................................................293
§2. Теоремы Ролля, Лагранжа и Коши о средних значениях ...........................................295
§3. Раскрытие неопределенностей по правилу Лопиталя.................................................301
§4. Формула Тейлора............................................................................................................307
§5. Примеры разложения с помощью формулы Тейлора .................................................310
§6. Использование формулы Тейлора для вычисления пределов....................................314
§7. Дополнительные задачи .................................................................................................316

СЕМИНАР №13................................................................................................. 325

МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ 
ОДНОГО ПЕРЕМЕННОГО..................................................................................................325

§1. Первообразная и неопределенный интеграл................................................................325
§2. Основные свойства неопределенного интеграла.........................................................327
§3. Интеграл и задача об определении площади ...............................................................331
§4. Различные способы интегрирования ............................................................................333
§5. Дополнительные задачи .................................................................................................343

СЕМИНАР №14................................................................................................. 347

МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ............................347

§1. Определение интеграла по Риману...............................................................................347
§2. Условия интегрируемости функций по Риману ..........................................................352
§3. Свойства определенного интеграла ..............................................................................354
§4. Методы вычисления  определенного интеграла..........................................................359
§5. Геометрические и физические приложения определенного интеграла ....................363
§6. Дополнительные задачи .................................................................................................373

СЕМИНАР №15................................................................................................. 379

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: ВВЕДЕНИЕ.........................................................................379

Плохотников К.Э. Базовые разделы математики для бакалавров в среде MATLAB

— 6 —

§1. Определение теории вероятностей ...............................................................................379
§2. Решение некоторых показательных задач....................................................................380
§3. Событие. Вероятность события.....................................................................................392
§4. Непосредственный подсчет вероятности .....................................................................394
§5. Частота или статистическая вероятность события......................................................401
§6. Случайная величина .......................................................................................................403
§7. Геометрическая вероятность .........................................................................................404
§8. Принцип практической уверенности ............................................................................406
§9. Дополнительные задачи .................................................................................................409

СЕМИНАР №16................................................................................................. 418

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: ЭЛЕМЕНТЫ КОМБИНАТОРИКИ...............................418

§1. Определение комбинаторики.........................................................................................418
§2. Размещения, перестановки и сочетания .......................................................................418
§3. Биномиальное распределение........................................................................................425
§4. Идея метода проверки статистических гипотез...........................................................427
§5. Дополнительные задачи .................................................................................................430

СЕМИНАР №17................................................................................................. 433

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: ОСНОВНЫЕ ТЕОРЕМЫ................................................433

§1. Смысл и назначение основных теорем теории вероятностей ....................................433
§2. Теорема сложения вероятностей...................................................................................439
§3. Теорема умножения вероятностей................................................................................449
§4. Формула полной вероятности........................................................................................458
§5. Теорема гипотез (формула Бейеса) ...............................................................................463
§6. Дополнительные задачи.................................................................................................467

СЕМИНАР №18................................................................................................. 473

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: ТЕОРЕТИКО-МНОЖЕСТВЕННАЯ
ТРАКТОВКА............................................................................................................................473

§1. Пространство элементарных исходов...........................................................................473
§2. Соответствие теории множеств и теории вероятностей .............................................474
§3. Дополнительные задачи .................................................................................................487

СЕМИНАР №19................................................................................................. 490

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СЕРИЯ ПОВТОРНЫХ ОПЫТОВ .................................490

§1. Основные определения, характерные для серии испытаний......................................490
§2. Локальная и интегральная предельные теоремы Муавра-Лапласа............................495
§3. Отклонение относительной частоты от постоянной вероятности.............................501
§4. Дополнительные задачи .................................................................................................506

СЕМИНАР №20................................................................................................. 509

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ 
ВЕЛИЧИН.................................................................................................................................509

§1. Ряд распределения. Многоугольник распределения...................................................509
§2. Функция распределения.................................................................................................514

Плохотников К.Э. Базовые разделы математики для бакалавров в среде MATLAB

— 7 —

§3. Вероятность попадания в заданный интервал .............................................................519
§4. Дополнительные задачи .................................................................................................522

СЕМИНАР №21................................................................................................. 527

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ И ПОКАЗАТЕЛИ
СРЕДНЕГО СЛУЧАЙНЫХ ВЕЛИЧИН.............................................................................527

§1. Плотность распределения ..............................................................................................527
§2. Числовые характеристики случайных величин ...........................................................536
§3. Показатели средней величины ......................................................................................537
§3. Дополнительные задачи .................................................................................................546

СЕМИНАР №22................................................................................................. 552

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: МОМЕНТЫ. ДИСПЕРСИЯ.
СРЕДНЕКВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ...............................................................552

§1. Моменты..........................................................................................................................552
§2. Дисперсия. Среднеквадратическое отклонение...........................................................557
§3. Коэффициент асимметрии и эксцесс ............................................................................559
§4. Дополнительные задачи .................................................................................................569

Плохотников К.Э. Базовые разделы математики для бакалавров в среде MATLAB

— 8 —

Семинар №1

АЛГЕБРА И ГЕОМЕТРИЯ: МАТРИЦЫ. ОПРЕДЕЛИТЕЛИ

Определяется понятие “матрицы”, а также основные операции с 
матрицами и над матрицами. Вводятся единичная и нулевая матрицы, понятие “определителя” квадратной матрицы. Формулируется 
теорема об определителе квадратной матрицы. Осуществляется знакомство с соответствующими средствами работы в пакете MATLAB
с матрицами и вычислением определителей квадратных матриц.

§1. Определение матриц

В этом и последующих семинарах будут рассмотрены основные положения 
классической математической дисциплины — линейной алгебры. Изложение 
будет осуществляться параллельно: обычным способом, т.е. с изложением 
деталей вычислений, и с помощью такого пакета прикладных программ, как 
MATLAB1.

Курс линейной алгебры является классическим разделом математики, 

излагаемым в вузах самой разной ориентации. Существует огромное количество учебников по курсу линейной алгебры2 разного уровня сложности, полноты изложения и различного рода специализации. Мы рассмотрим лишь некоторые разделы, которые наиболее важны для целей исследования и моделирования социально-экономических процессов.

Матрица или таблица чисел прямоугольной формы занимает особую 

роль в знаковой деятельности человека. Человеку трудно изучать бесформенную совокупность чисел. На рис.1,а приведена пара совокупностей чисел, 
которые разбросаны случайно в прямоугольнике A и собраны в виде таблицы 
B на рис.1,б.

Когда числа собраны в прямоугольную таблицу, то можно говорить о 

числе строк и столбцов. Так в таблице на рис.1,б — 3 строки и 2 столбца. В 
этом случае будем говорить, что таблица на рис.1,б имеет размер 32. Таблица чисел может быть и квадратная, например, 33, т.е. она тогда квадратная, 
когда у нее число строк и столбцов совпадает. Наконец, можно говорить о 

1 Среда MATLAB для научных и технических математических вычислений изложена во множестве 

учебных пособий, среди них выделим: Мартынов Н.Н. Введение в MATLAB6. — М.: КУДИЦ-ОБРАЗ, 2002. 
352с.; Дьяконов В.П. MATLAB 6/6.1/6.5+Simulink4/5. Основы применения. Полное руководство пользователя. — М.: СОЛОН-Пресс, 2002. 768с.; Плохотников К.Э., Волков Б.И., Задорожный С.С., Антонюк В.А., Терентьев Е.Н., Белинский А.В. Методы разработки курсовых работ. Моделирование, вычисления, программирование на С/С++ и MATLAB, виртуализация, образцы лучших студенческих курсовых работ: Учеб. пособие/ Под ред. К.Э. Плохотникова. — М.: СОЛОН-ПРЕСС, 2006. 320с.; Плохотников К.Э. Вычислительные 
методы. Учебное пособие для вузов. — 2-е изд., испр. — М.: Горячая линия — Телеком, 2013. 496с.

2 Ильин В.А., Позняк Э.Г. Линейная алгебра: Учеб.: Для вузов. — 6-н изд. стер. — М.: ФИЗМАТ
ЛИТ, 2005. — 280с.; Воеводин В.В. Линейная алгебра. — М.: Наука, 1980. — 400с.; Гельфанд И.М. Лекции 
по линейной алгебре. — М.: Добросвет, Московский центр непрерывного математического образования, 
1998. — 320с.; Малугин В.А. Математика для экономистов: Линейная алгебра. Курс лекций. — М.: Эксмо, 
2006. — 224с.; Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике: Учебник: в 2-х. ч. 
Ч.1 — М.: Финансы и статистика, 2000. — 224с.; Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике: Учебник: в 2-х. ч. Ч.2 — М.: Финансы и статистика, 2000. — 376с.

Плохотников К.Э. Базовые разделы математики для бакалавров в среде MATLAB

— 9 —

самой простейшей матрице, которая состоит из одной строки и одного 
столбца, т.е. о матрице 11 — это просто одно число.

5,1
2

5,2

3
2

1


B

Рис.1,а. Бесформенная совокупность некоторого 

числа чисел

Рис.1,б. Числа собраны в виде сово
купности прямоугольной формы

Ниже приведен пример статистики3 с данными по числу самоубийств и 

количеству потребляемого алкоголя в РФ в течение ряда лет. Определение
такой таблицы уже подразумевает изучение вопроса: как связаны друг с другом количество потребляемого алкоголя с числом самоубийств в РФ?

Год
Алкоголь
(млн. дкл)

Самоубийства

(тыс. чел.)

1970
101,0
38,9

1975
122,0
44,8

1980
137,0
47,9

1985
109,0
44,6

1990
78,8
39,2

1995
60,8
61,0

1996
39,3
57,8

1997
46,0
55,0

1998
50,0
51,8

1999
73,4
57,3

2000
74,4
56,9

2001
83,5
57,3

2002
90,4
55,3

2003
91,5
51,7

2004
95,9
49,4

В общем случае прямоугольную матрицу A можно определить двумя 

целыми числами: числом строк — n (n  1) и числом столбцов — m (m  1).
Число строк и столбцов или порядок матрицы, или габариты матрицы можно 
представить в виде: A = A(nm). Сами матрицы будем обозначать заглавными 
латинскими буквами A, B, …, а их элементы — строчными, например, a11, 
a12,…an,m; b11, b12,…, bn,m, … Элементы матриц могут быть самыми разнообразными числами: целыми, вещественными, комплексными или иными объ
3 Российский статистический ежегодник. 2005: Стат. сб./Росстат. — М.:, 2006. 819с.

A

1

2

3

2,5
2

1,5