Диагностика и контроль технического состояния самолетов по результатам резонансных испытаний
Покупка
Основная коллекция
Тематика:
Воздушный транспорт
Издательство:
Новосибирский государственный технический университет
Автор:
Бернс Владимир Андреевич
Год издания: 2012
Кол-во страниц: 272
Дополнительно
Вид издания:
Монография
Уровень образования:
ВО - Магистратура
ISBN: 978-5-7782-1981-6
Артикул: 636903.01.99
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Магистратура
- 24.04.04: Авиастроение
- 25.04.02: Техническая эксплуатация авиационных электросистем и пилотажно-навигационных комплексов
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
БЕРНС В.А. ДИАГНОСТИКА И КОНТРОЛЬ ТЕХНИЧЕСКОГО СОСТОЯНИЯ САМОЛЕТОВ ПО РЕЗУЛЬТАТАМ РЕЗОНАНСНЫХ ИСПЫТАНИЙ Монография НОВОСИБИРСК 2012
УДК 629.735.33.018.4 Б 514 Рецензенты: д-р техн. наук, профессор В.Е. Левин д-р техн. наук, зам. директора по научной работе СибНИИА В. К. Белов Бернс В.А. Б 514 Диагностика и контроль технического состояния самолетов по результатам резонансных испытаний : монография / В.А. Бернс. - Новосибирск : Изд-во НГТУ, 2012. - 272 с. (Серия «Монографии НГТУ»). ISBN978-5-7782-1981-6 В монографии изложены методы анализа результатов резонансных испытаний, проведенных с целью выявления конструктивных и технологических дефектов технического состояния самолетов. Представлено решение проблемы резонансных испытаний и модальной идентификации конструкций без использования априорного математического описания их диссипативных свойств. Приведены результаты исследований погрешностей определения характеристик собственных тонов колебаний. Описаны нелинейные математические модели конструкций с дефектами и методы анализа результатов испытаний, позволяющие установить наличие и виды дефектов, определить их местоположение и оценить величину. Рассмотрены такие виды дефектов, как люфты и повышенное трение в механических проводках управления, недостаточная эффективность гидравлических демпферов в составе упругого планера, несоосная установка опор отклоняемых поверхностей, низкая жесткость крепления агрегатов. По результатам резонансных испытаний 80 самолетов десяти типов составлен перечень типовых конструктивных и технологических дефектов планера и систем, обнаруженных в этих испытаниях. Монография предназначена для специалистов, занимающихся разработкой и испытаниями авиационной техники. УДК 629.735.33.018.4 © Бернс В.А., 2012 © Новосибирский государственный технический университет, 2012 ISBN 978-5-7782-1981-6
V.A. BERNS APPLICATION OF RESONANCE TESTING RESULTS IN AIRCRAFT TECHNICAL STATE CONTROL Monograph NOVOSIBIRSK 2012
UDC 629.735.33.018.4 В 514 Reviewers: Prof. V.E. Levin, D.Sc. (Eng.) V.K. Belov, D.Sc. (Eng.), Deputy Director for Research, SIBNIA Berns V.A. B514 Application of Resonance Testing Results in Aircraft Technical State Control : monograph / V.A. Berns. - Novosibirsk : NSTU Publisher, 2012. -272 pp. (“NSTU Monographs” series). IBSN 978-5-7782-1981-6 The monograph describes methods of analysis of resonance testing results aimed at revealing design and technological defects that characterize parameters of the aircraft technical state. The solution to the problem of resonance testing and modal identification of structures without using mathematical description of vibration damping is presented. The results of investigating errors in determining characteristics of eigen tones of vibrations are given. Nonlinear mathematical models of defective structures are described along with methods of analyzing testing results that make it possible to find and specify types of defects locate them and evaluate their size. Such types of defects as plays and increased friction in mechanical control system guide, insufficient efficiency of hydraulic dampers in elastic airframes, out-of-alignment mounting of control vane supports, and low stiffness of aircraft unit attachment are considered in the monograph. Based on the results of resonance testing of 80 aircraft of 10 types a list of typical design and technological defects of aircraft airframe and systems revealed in these tests has been made. The monograph is designed for specialists involved in developing and testing aircraft systems and units. UDC 629.735.33.018.4 ©Berns V.A., 2012 © Novosibirsk State Technical University, 2012 ISBN 978-5-7782-1981-6
ВВЕДЕНИЕ Современные требования к надежности, эффективности и безопасной эксплуатации авиационной техники вызывают необходимость разрабатывать технические средства и методы обеспечения неразрушения и нормального функционирования силовых элементов и бортовых систем самолетов. Для этого надо выявлять конструктивные и технологические дефекты планера, агрегатов и систем на этапе их производства. Такие дефекты, как правило, непосредственно влияют на структурные параметры, характеризующие техническое состояние самолетов, поэтому контроль их - актуальная задача. Несмотря на тщательный надзор за соблюдением технологической дисциплины, за качеством изготовления деталей и агрегатов, точностью сборочных работ, надежно оценить параметры технического состояния самолетов можно только на основе объективного контроля полностью собранных и оборудованных изделий. К сожалению, широко известные методы объективного контроля (визуальный осмотр, неразрушающие методы) в силу разных причин не всегда могут быть использованы, а во многих случаях не дают полного ответа о техническом состоянии такого объекта, как самолет. В общем машиностроении наиболее распространены методы оценки технического состояния конструкций по параметрам вибраций. Как известно, вибрационные методы можно условно разделить на пассивные и активные. В первом случае исследуются сигналы, получаемые при нормальном функционировании контролируемого объекта, а во втором -соответствующая информация, получаемая при приложении к объекту специально заданных воздействий. На основе таких методов созданы различные контрольные приборы и стенды для диагностирования в основном машин и механизмов, имеющих вращающиеся части; различного типа подшипников; соединительных муфт и механических передач.
Но использование этих методов для выявления конструктивных и технологических дефектов планера, агрегатов и систем самолетов невозможно в силу их специализированности и узкой направленности. В то же время полностью собранные и укомплектованные оборудованием самолеты подвергаются контрольным резонансным (частотным) испытаниям. Испытаниям подвергаются все опытные самолеты или, по крайней мере, один из каждой серии. В основу методов резонансных испытаний положено использование режимов вынужденных колебаний конструкций. Целью испытаний становится определение собственных частот, форм и коэффициентов демпфирования собственных тонов колебаний самолетов. При этом в результатах испытаний могут обнаруживаться отклонения динамических характеристик либо от соответствующих расчетных значений, либо от величин, полученных в проведенных ранее испытаниях однотипных изделий. Возможны и нарушения симметрии характеристик, присущей симметричным объектам. Такие отклонения, как правило, есть следствие появления в конструкции конструктивных или технологических дефектов, для обнаружения которых необходимо разработать методы анализа результатов резонансных испытаний. Один из методов решения этой задачи -математическое моделирование конструкции самолета с дефектом и последующее определение параметров дефекта по результатам испытаний, т. е. проведение идентификации динамических систем. Следует отметить, что существующие методы идентификации основаны, как правило, на математическом описании объекта исследований с точностью до некоторых параметров. Эти параметры и определяются методами идентификации. При этом одновременно используются описания инерционных, упругих и диссипативных свойств конструкций, хотя способа достоверного априорного математического описания сил демпфирования в настоящее время не существует. Такой подход к решению задачи идентификации может привести к искажению характеристик реальной динамической системы и придать не присущие ей свойства. Это важное обстоятельство необходимо учитывать при разработке методологии анализа результатов испытаний для выявления конструктивных и технологических дефектов. Поскольку появление дефектов обнаруживается по отклонениям динамических характеристик конструкций, необходимо или исключить влияние других факторов на эти характеристики, или иметь возможность оценивать это влияние.
1. МЕТОДЫ РЕЗОНАНСНЫХ ИСПЫТАНИЙ, ИДЕНТИФИКАЦИИ И КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КОНСТРУКЦИЙ /развитие методов резонансных испытаний и идентификации конструкций тесно связано с совершенствованием экспериментального оборудования и вычислительной техники. Первые способы определения параметров уравнений движения механических систем, разработанные в 1950-х годах, относились в основном к уравнениям колебаний, записанным в главных координатах (производилась модальная идентификация конструкций). Собственные частоты и формы, обобщенные массы и декременты колебаний тонов определялись по результатам резонансных испытаний при одноточечном возбуждении, поэтому постулировались такие свойства реальных систем, как незначительное демпфирование, отсутствие близких собственных частот, выполнимость гипотезы Базиля о возможности приведения матриц инерции, жесткости и демпфирования к диагональному виду одним преобразованием координат. С появлением в пятидесятых годах экспериментального оборудования, реализующего многоточечное возбуждение колебаний, начали разрабатываться методики подбора сил для разделения тонов, имеющих близкие собственные частоты. Кроме того, возможность введения фазового сдвига в силы возбуждения позволила создать метод определения обобщенных масс, не требующий выполнения гипотезы Базиля. Совершенствование вычислительной техники, увеличение числа каналов измерения и скорости опроса датчиков экспериментального
1. МЕТОДЫ РЕЗОНАНСНЫХ ИСПЫТАНИЙ, ИДЕНТИФИКАЦИИ И КОНТРОЛЯ оборудования, а также возможность непосредственно вводить результаты резонансных испытаний в память ЭВМ послужили толчком к развитию (параллельно модальной идентификации) методов определения параметров уравнений движения относительно физической системы координат. Такие методы носят название методов параметрической идентификации. Параметрическая идентификация лишена основного недостатка модальной - необходимости подбирать силы возбуждения, но при этом она часто не дает единственного решения обратной задачи и может приводить к плохо обусловленной матрице системы уравнений, из которой определяются параметры математической модели. Достаточно общие методы нелинейной идентификации разработаны только для систем с одной степенью свободы, поскольку решение такой задачи усложнено неприменимостью принципа суперпозиции в анализе нелинейных систем. 1.1. Резонансные испытания и идентификация динамических систем Методами вибрационных испытаний и идентификации динамических систем решаются следующие задачи: а) определение структуры математической модели (выбор вида дифференциальных уравнений движения) и выявление характеристик модели, которые нельзя получить заранее с достаточной точностью; б) выбор критерия качества для оценки соответствия модели реальной системе; в) выбор алгоритма определения параметров модели. Методы, используемые для решения поставленных задач, различаются по тому, какая математическая модель положена в их основу. Если движение механических систем с распределенными параметрами описывается дифференциальными уравнениями в частных производных, то задачей идентификации будет определение функций, описывающих распределение масс, жесткостей и демпфирования конструкции по известным параметрам движения и внешнего воздействия. Для составления уравнений обратной задачи динамики систем с распределенными параметрами необходимы величины производных перемещений по времени и координатам. Так как не все эти производ
1.1. Резонансные испытания и идентификация динамических систем 11 ные удается измерить в эксперименте, то используются процедуры численного дифференцирования экспериментальных зависимостей. Такие процедуры могут давать значительные погрешности, если в экспериментальных данных присутствуют ошибки. В статье Пердровиля, Гудсона [123] предлагается способ решения задачи идентификации, позволяющий в ряде случаев исключить дифференцирование перемещений. Этот способ заключается в поочередном умножении уравнения движения на некоторые функции и интегрировании его по интервалу времени наблюдения и объему системы. Полученные интегралы берутся по частям до тех пор, пока под знаками интегралов не появятся производные перемещений, измеряемые в эксперименте. Функции, на которые умножается уравнение движения, выбираются так, чтобы вне-интегральные члены обратились в ноль. Число таких функций должно быть не меньше числа неизвестных параметров модели (распределения масс, жесткостей и демпфирования представляются рядами). Коллинзом, Хатри [76] рассматривается случай, когда распределения жесткости, инерции и демпфирования известны с точностью до постоянных коэффициентов, причем уравнение движения линейно относительно этих коэффициентов. Подставляя в уравнение движения измеренные значения перемещений в отдельных точках конструкции для ряда моментов времени (причем производные заменяются конечными разностями), получают систему алгебраических уравнений относительно неизвестных коэффициентов. Так как в экспериментальных данных возможны ошибки, то рекомендуется решать переопределенную систему уравнений. В работе С.Ф. Редько [146] предлагается два способа определения погонной массы (момента инерции), жесткости и погонного коэффициента демпфирования балки переменного сечения, совершающей из-гибные (крутильные) колебания. В эксперименте измеряются перемещения (углы поворота) конечного числа сечений балки. Первый способ аналогичен способу, изложенному в работе [71], но неизвестными будут характеристики балки в ряде сечений. Отмечается низкая точность такого решения, если в экспериментальных данных есть ошибки. Второй способ заключается в кусочно-линейной аппроксимации неизвестных функций, разложении перемещений по системе ортогональных функций с коэффициентами, зависящими от времени, и интегрировании уравнения движения по методу Бубнова-Галеркина. Полученная система обыкновенных дифференциальных уравнений решается относительно перемещений, а параметры кусочно-линейной аппроксима
1. МЕТОДЫ РЕЗОНАНСНЫХ ИСПЫТАНИЙ, ИДЕНТИФИКАЦИИ И КОНТРОЛЯ ции определяются из условия минимума различия расчетных и измеренных перемещений сечений балки. Методы идентификации систем с распределенными параметрами не получили широкого развития, так как для решения задач динамики сложных систем редко используются дифференциальные уравнения в частных производных. Для расчета сложных пространственных конструкций обычно применяются математические модели с конечными числами степеней свободы. Если нелинейности жесткости и демпфирования реальных систем малы и допускают эквивалентную линеаризацию, то математической моделью таких систем будет система обыкновенных дифференциальных уравнений вида АХ (t) + Q + СХ (t) = E (t). (1.1) Задача идентификации в этом случае заключается в определении элементов матриц инерции A (N х N) и жесткости С (N х N), параметров сил демпфирования Q (N) по измеренным перемещениям Х (N) (скоростям Х (N), ускорениям Х (N)) точек системы и известным внешним силам E(N). В зависимости от того, в какой системе координат записаны уравнения (1.1) - физической или нормальной, различают параметрическую и модальную идентификации. При параметрической идентификации уравнения движения (1.1) записываются с точностью до коэффициентов. В эти уравнения подставляются измеренные в эксперименте перемещения, скорости и ускорения точек системы. При известном внешнем воздействии (скорости и ускорения иногда определяются численным дифференцированием перемещений) записываются условия соответствия параметров модели выбранному критерию качества. Эти условия представляют собой систему алгебраических уравнений относительно неизвестных параметров, которую обычно делают переопределенной для снижения влияния ошибок эксперимента. Отметим, что отсутствие универсальной модели демпфирования приводит к тому, что в разных работах может использоваться различное математическое описание сил демпфирования Q. Если в уравнениях обратной задачи параметры разной физической природы не разделены, то с изменением модели рассеяния энергии меняются не толь