РОЛЬ МЕЖКЛЕТОЧНЫХ ВЗАИМОДЕЙСТВИЙ В РЕГУЛЯЦИИ ЭРИТРОПОЭЗА
Бесплатно
Основная коллекция
Издательство:
НИИ ноpмальной физиологии им. П.К. Анохина
Год издания: 2015
Кол-во страниц: 3
Дополнительно
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
participating in the transduction of regulator signals at equilibrium hemopoiesis conditions. DOI:10.12737/12263 РОЛЬ МЕЖКЛЕТОЧНЫХ ВЗАИМОДЕЙСТВИЙ В РЕГУЛЯЦИИ ЭРИТРОПОЭЗА Ю.М.Захаров, И.Ю.Мельников Южно-Уральский государственный медицинский университет (ректор И.И.Долгушин), Челябинск zaharovum@chelsma.ru Эритропоэз у человека и млекопитающих протекает в эритробластических островках (ЭО), представленных «коронами» эритроидных клеток, окружающих макрофаги. Регуляция эритропоэза в ЭО осуществляется гормональной (эритропоэтин (ЭП) плазмы крови), симпатическской нервной и иммунной (Т-лимфоциты) системами, аутокринным и паракринным механизмами, функционирующими в ЭО по принципу положительной и отрицательной обратных связей. ЭП увеличивает: аффинность КОЕэ к макрофагам костного мозга, рост числа ЭО, пролиферации и дифференциации их эритроидных клеток; секрецию макрофагами ЭО эндогенного ЭП и глюкозаминогликанов, создавая эритропоэтическое микроокружение в ЭО; подавляет апоптоз эритрокариоцитов в ЭО. Снижение потребности тканей организма в О2 «включает» адаптивные ответы клеточных компонентов ЭО, тормозящих эритропоэз: снижается чувствительность к ЭП у макрофагов костного мозга, образование новых ЭО, митотической активности их эритроидных клеток, продукция эндогенного эритропоэтина и глюкозаминогликанов, в ЭО резко активируется синтез тормозящих эритропоэз цитокинов - ФНО-альфа, ИЛ-6. ROLE OF CELL-CELL INTERACTIONS IN ERYTHROPOIESIS REGULATION Yu.M.Zakharov, I.Yu.Melnikov. South-Ural state medical university (rector I.I.Dolgushin), Chelyabinsk zaharovum@chelsma.ru Key words: erythroblastic island, erythropoiesis, regulation of erythropoiesis. Erythropoiesis in human and mammals take place in erythroblastic islands (EI) formed by complexation of CFU-erythroid (or erythroblasts) with bone marrow macrophages [5]. Consequent doubling of initial CFU-erythroid cell or erythroblasts in an order 1:2:4:8:16:32 forms an erythroid “crown” of EI. The kinetic model of CFU-erythroid entering EI development and erythropoiesis pattern in its
erythroblastic “crown” is described by our EI classification. It defines the EI with erythroid cells amplification in order 1:2:4:8 as EI of 1 class (of development), cells amplification in order 8:16 forms an EI of 2 class, cells amplification in order 16:32 forms a 3 class EI. Erythroid “crown” of 1-2-3 classes EI to proceed proliferation and differentiation of erythrokaryocytes. EI of 3 class develops in “involution” class EI, “crown” of them represented only by maturing to reticulocytes normoblasts. Normally, up to 20% of involution class EI macrophages are capable to create a new contact with CFU-erythroid, thus starting a new wave of erythropoiesis in erythroid “crown”. These EI represents a “reconstruction” class in our classification. The sum of total amount of all classes EI plus an amount of “reconstruction” class EI per bone marrow femur in rat (or per mg of haemopoietic bone marrow in human) represents a total amount of CFU-erythroid undergoing path of differentiation in EI. The sum of amount of 1 class EI plus “reconstruction” class EI in bone marrow per femur represents the intensity of CFU-erythroid involvement in differentiation. Practical use of this classification and calculated indexes of our laboratory mentioned above along with invented methods of functional characterization of EI macrophages, permanent video registration of EI culture, for the first time made it possible to estimate quantitative parameters of formation and evolutional changes in EI erythropoiesis, a role of macrophages in regulation of these processes in animals and in human, in state of normal steady erythropoiesis, in stimulation and depression, and to modulate these conditions by EI culture technique [1,3]. Our laboratory publications clearly show that erythropoiesis regulation in EI is modulated by long-range regulation influences: humoral (erythropoietin plasma level), nervous (symphatic), immune (Tlymphocytes) regulations, aimed on a blood oxygen supply capacity to meet tissue oxygen requirements of a whole body. In hypoxic conditions these long-range regulations activate short-range autocrine and paracrine mechanisms of erythropoiesis regulation, that works on a basis of negative or positive feedback paths [1]. For example, blood erythropoietin reveals ability to: 1. augment the CFU-erythroid affinity towards bone marrow macrophages by stimulating adhesive molecules expression on their membranes necessary for EI formation, that results in increase of EI amount in hematopoietic tissue; 2. initiate both synthesis and secretion of endogenous erythropoietin production by EI macrophages, thus providing a backup path for erythropoiesis proceeded and for newly formed EI in a model of lack of blood erythropoietin; 3. activates both synthesis and secretion of neutral, sulfated, “oversulfated” glucose-amino-glycans by EI macrophages for cell-cell regulation, that increases receptor appearance on erythroid cells, presenting them growth factors; 4. augment macrophage locomotion, their contacts with CFU-erythroid and new formation of EI, tansport of mature erythroid “crown” EI toward bone marrow sinusoids 5. stimulate lymphoid cells to contact with 1 class and “reconstruction” EI; 6. both plasma origin and endogenous production erythropoietin accelerates the dynamics of erythroid cells amplification waves in EI “crown”, reduces their apoptosis, stimulates normoblasts maturation processes [1,3,4].
The reduced tissue oxygen uptake demands of an organism results in a reduction of erythropoiesis and erythrocyte production up to level of necessary oxygen tissue supply. For example, posttransfusional polycythaemia in rat leads to a well known in experimental hematology reduction in renal erythropoietin production and erythropoiesis reduction that was provoked by reduced oxygen uptake tissue demands. We estimated typical adaptive changes in EI cell components, resulted in erythropoiesis reduction. Their further investigations with EI culture technique on posttransfused polycythaemic rat model revealed: 1. sensitivity reduction to additional erythropoietin in culture by bone marrow macrophages, that prevents new EI formation; 2. lack of EI erythroid cells ability to respond by mitotic activity rise to erythropoietin added to culture; 3. EI macrophages to reduce endogenous erythropoietin production, at the same time markedly increase expression, synthesis and secretion of erythropoiesis inhibiting cytokines – TNF-alpha, IL-6; 4. lymphoid cells contact inhibition with 1 class and reconstruction class EI; 5. EI macrophages reduce an erythropoietic activity microenvironment in EI by decreasing both synthesis and secretion of glucose-amino-glycan fractures total amount [2]. References. 1. Zakharov Yu.M. Regulation of erythropoiesis in erythroblastic islands of bone marrow. Russian J.of Physiology. 97(9): 980-994, 2011; 2. Zakharov Yu.M., Melnikov I.Yu., Shevyakov S.A., Tishevskaya N.V. Mechanisms of erythropoiesis suppression in posttransfused polycythaemia. Bulletin of Ural Med. Acad. Sci. 3(49): 100-103. 2014; 3. Zakharov Yu.M., Rassokhin A.G. Erythroblastic island. M., Meditsina: 2002. 280p. 4. Zakharov Yu.M., Feklicheva I.V. Influence of erythropoietin and T-lymphocytes on erythropoiesis in culture of erythroblastic islands of bone marrow in polycythaemic rat. Bulletin of Ural Med. Acad. Sci. 1: 81-84. 2009. 5. Bessis M. Reinterpretation des frottis sanguins. Masson. Paris. 107. DOI:10.12737/12265 ВЛИЯНИЕ СЕЛЕКТИВНОЙ БЛОКАДЫ Α2A/D-АДРЕНОРЕЦЕПТОРОВ НА СЕРДЕЧНО-СОСУДИСТУЮ СИСТЕМУ РАСТУЩИХ КРЫС Т.Л. Зефиров1, Л.И. Хисамиева1, Н.И. Зиятдинова1, Л.И. Фасхутдинов1, А.Л. Зефиров2 1Кафедра анатомии, физиологии и охраны здоровья человека (зав. каф. докт. мед. наук, проф. Т.Л.Зефиров) Казанского (Приволжского) федерального университета; 2Кафедра нормальной физиологии (зав. каф. – чл.-корр. РАН, проф. А.Л. Зефиров) Казанского государственного медицинского университета zefirovtl@mail.ru