Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

05.00.00 ТЕХНИЧЕСКИЕ НАУКИ

Покупка
Основная коллекция
Артикул: 608260.0002.99.0003
Доступ онлайн
49 ₽
В корзину
05.00.00 ТЕХНИЧЕСКИЕ НАУКИ. - Текст : электронный // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. - 2014. - №97. - С. 1-382. - URL: https://znanium.com/catalog/product/523749 (дата обращения: 31.05.2025). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов
Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

1

УДК 630*.232.216 
UDC 630*.232.216 
 
 
ОПТИМИЗАЦИЯ УГЛОВ УСТАНОВКИ 
ДИСКОВЫХ РАБОЧИХ ОРГАНОВ 
УНИВЕРСАЛЬНОГО 
ПОЧВООБРАБАТЫВАЮЩЕГО ОРУДИЯ 

OPTIMIZATION OF DISK TOOLS 
ORIENTATION ANGLES OF THE UNIVERSAL 
SOIL-PROCESSING INSTRUMENT 
 
 
 
Попов Игорь Владимирович 
аспирант 
Popov Igor Vladimirovich 
postgraduate student 
ФГБОУ ВПО "Воронежская государственная лесотехническая академия", Воронеж, Россия 
Voronezh State Academy of Forestry Engeneering, 
Voronezh, Russia 
 
 
На основе математической модели функционирования универсального почвообрабатывающего 
орудия найдены оптимальные углы установки дисковых рабочих органов. Решение задачи оптимизации базируется на аналитической аппроксимации 
результатов имитационного моделирования и анализе карт оптимизации 

The optimal angles of spatial orientation of disk tools 
are found basing on the mathematical model of the 
universal soil-processing instrument. The optimization 
problem has solved basing on analytical approximation 
of imitational modeling results and optimization map 
analysis 
 
 
 
Ключевые слова: ОПТИМИЗАЦИЯ, 
МОДЕЛИРОВАНИЕ, ДИСКОВЫЙ РАБОЧИЙ 
ОРГАН, ПОЧВООБРАБАТЫВАЮЩЕЕ ОРУДИЕ, 
ПОСАДКА СЕЯНЦЕВ 

Keywords: OPTIMIZATION, MODELING, DISK 
TOOL, SOIL-PROCESSING INSTRUMENT, 
PLANTING SEEDLINGS 

 

Исторически наблюдается постепенный переход машин от непре
рывных к прерывистым (точечным) методам обработки почвы. Происхо
дит это в основном из-за проблем, вызванных препятствиями на местно
сти.  Для их решения нами предложена конструкция универсального поч
вообрабатывающего орудия (УПО), предназначенного для образования 

микроповышений заданных размеров в условиях временно переувлажняе
мых почв и площадок с удаленным верхним слоем на дренированных поч
вах с одновременным образованием лунок под посадку лесных культур 

(Рисунок 1, а). Рабочий орган орудия выполнен в виде трёх сферических 

дисков, закрепленных на вертикальном валу при помощи обоймы и повод
ков, обеспечивающих поворот их в положение работы «всвал» (образова
ние микроповышений) или «вразвал» (образование углубления – площадки 

на дренированных почвах), причем сферические диски размещены по 

окружности на своих осях с возможностью индивидуального свободного

вращения, сохраняя свойства почвообрабатывающего орудия, а углы меж
ду смежными сферическими дисками равны 120°. В поводках выполнены 

Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

2

продольные пазы, позволяющие перемещать диски в радиальном направ
лении и фиксировать их в установленном положении. Обойма выполнена с 

возможностью перемещения и фиксирования в определенном положении 

на валу. 

 В процессе работы орудия трактор подъезжает к предполагаемому 

посадочному месту, останавливается, орудие опускается на землю, после 

чего включается независимый привод вала отбора мощности (ВОМ) трак
тора. Сферические диски заглубляются в почву, вращаются вокруг верти
кальной оси орудия и собственной оси вращения. В зависимости от угла 

установки дисков может образовываться как микроповышение, так и мик
ропонижение в виде горизонтальной площадки. При достижении требуе
мой глубины лунки привод ВОМ отключается, машина выглубляется, за
тем трактор переезжает к следующему месту работы. 

Углы установки дисковых рабочих органов (α и β на Рисунок 1, а), 

среди всех конструктивных параметров УПО, оказывают наиболее непро
гнозируемое заранее влияние на его эффективность. Поэтому целью дан
ной работы был поиск оптимальных углов установки дисков, при которых 

орудие наиболее эффективно в плане обеспечения качества формирования 

микроповышения и энергозатрат.  

 
Оптимизация производится на основе разработанной ранее матема
тической модели функционирования агрегата. В рамках модели имитиру
ется обработка почвы, как фрагментируемой среды, тремя рабочими по
верхностями в форме сферических дисков (Рисунок 1, б). Моделирование 

почвы производится в рамках SPH-подхода: почва представляется сово
купностью 7000 шарообразных элементов диаметром 5 см, способных вза
имодействовать вязко-упругими силами как между собой, так и с рабочими 

поверхностями орудия [1]. Рабочие поверхности УПО представляются в 

модели совокупностью элементарных треугольников. 

 

Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

3

а

б

 
1 – рама орудия; 2 – редуктор; 3 – выходной вал редуктора; 4 – сфериче
ские диски; 5 – поводки; 6 – обойма; 7 – бур; 8 – ось диска; 9 – резцы 

Рисунок 1. Универсальное почвообрабатывающее орудие: а – принципи
альная схема; б – представление в модели 

 
Среди большого количества конструктивных параметров УПО углы 

α и β установки дисков наиболее непредсказуемым и существенным обра
зом влияют на эффективность орудия. Для определения оптимальных уг
лов α и β необходимо решить задачу оптимизации данных параметров.  

 
В качестве критериев оптимизации обычно выбирают показатели 

производительности, качества и экономической целесообразности [2]. В 

данном случае в качестве критериев выбраны показатели, определяющие 

Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

4

качество формируемого конуса микроповышения и затраты мощности:  

 
К
h – высота формируемого конуса от среднего уровня поверхности; 

 
Н
h
∆
 – неравномерность высоты формируемого конуса вдоль окруж
ности; 

 
N – потребляемая УПО мощность. 

В процессе оптимизации необходимо найти такие значения парамет
ров α и β при которых высота формируемого конуса 
К
h  будет как можно 

больше, неравномерность высоты конуса вдоль окружности 
Н
h
∆
 будет как 

можно меньше, потребляемая орудием мощность N  будет как можно 

меньше. Поэтому задача оптимизации может быть записана следующим 

образом. 

 







→

→
∆

→

.
min
)
,
(

min;
)
,
(

max;
)
,
(

β
α

β
α

β
α

N

h

h

Н

К

 
(1)

 

 
Для установления взаимосвязи между критериями и факторами проведена серия из 16 компьютерных экспериментов по формированию микроповышения орудием с ориентацией дисков вовнутрь ( 
 

 

 
 
 
Таблица 1). Фактор α изменяли от 0О до 30О с шагом 10О, а фактор β изме
няли от 0О до 30О с шагом 10О. Компьютерные эксперименты проводили в 

трехкратной повторности, с последующим усреднением результатов. 

 

 
 
 
 

Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

5

 
Таблица 1 – Влияние углов установки дисков α и β на показатели эффек
тивности УПО в режиме образования микроповышений 

Номер комп. 
экспер. 
α, градусы 
β, градусы 
hК, см 
∆hН, см 
N, кВт 

1 
0 
0 
0,0 
0,5 
8,44 

2 
0 
10 
0,9 
0,3 
8,55 

3 
0 
20 
3,8 
0,9 
9,23 

4 
0 
30 
6,8 
1,1 
9,63 

5 
10 
0 
2,8 
3,8 
6,97 

6 
10 
10 
4,0 
5,3 
7,40 

7 
10 
20 
7,7 
4,2 
8,25 

8 
10 
30 
8,7 
4,3 
8,56 

9 
20 
0 
6,0 
7,4 
7,05 

10 
20 
10 
7,4 
7,4 
7,69 

11 
20 
20 
9,8 
7,4 
7,72 

12 
20 
30 
12,6 
5,5 
8,27 

13 
30 
0 
7,2 
9,8 
7,38 

14 
30 
10 
9,4 
11,5 
7,28 

15 
30 
20 
11,9 
10,6 
7,88 

16 
30 
30 
15,1 
15,7 
8,56 

 

 
Для визуальной оценки качества формируемого микроповышения 

приведены поперечные (Рисунок 2) и окружные профили (Рисунок 3).  

 
Для выявления аналитической заномерности в полученной совокуп
ности данных компьютерных экспериментов выполнена аппроксимация 

функций hК(α, β), ∆hК(α, β), N(α, β) полиномами второго порядка. Такие 

полиномы имеют в данном случае вид: 

 

,
k
k
k
k
k
k
= )
,
P(
6
5
4
3
2
2
2
1
+
+
+
+
+
β
α
αβ
β
α
β
α
 
(2)

 

где P – рассчитываемый показатель (hК, ∆hН или N); 

Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

6

k1 ... k6 – коэффициенты многочлена [3]. 

 

r, м 

h(r) 

r, м 

h(r) 

α = 0О

β = 0О 

–0,2
0,0
0,2
0,6
–0,6

0,0
0,1

0,4
–0,4

0,2
α = 0О

β = 20О

–0,2
0,0
0,2
0,6
–0,6

0,0
0,1

0,4
–0,4

0,2

r, м 

h(r) 

r, м 

h(r) 

α = 20О

β = 0О 

–0,2
0,0
0,2
0,6
–0,6

0,0
0,1

0,4
–0,4

0,2

–0,2
0,0
0,2
0,6
–0,6

0,0
0,1

0,4
–0,4

0,2
α = 20О

β = 20О

 
 

Рисунок 2. Поперечные профили области обработки при некоторых углах 

установки α и β дисков 

 

 
Для определения коэффициентов зависимостей P(α, β) будем исполь
зовать методом наименьших квадратов [3,4]. Метод заключается в реше
нии обратной задачи для определения таких коэффициентов k1 ... k6, при 

которых суммарное квадратичное отклонение аналитической зависимости 

от данных компьютерного эксперимента будет минимальным: 

(
)
(
)
(
)
∑
=
→
−

КЭ
N

i

i
i
i
КЭ
i
i
аналит
P
P

1

2

.
min,
,
,
β
α
β
α
 
(3)

Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

7

где i – номер компьютерного эксперимента; 

NКЭ – общее количество компьютерных экспериментов; 

Pаналит. – аналитическая зависимость показателя P от факторов; 

Pi
КЭ. – табличные значения показателя P для i-го компьютерного экс
перимента. 

 

φ, град.
60 
30 
0 
90 

h(φ)

0,0
0,1
0,2

φ, град.
60 
30 
0 
90 

h(φ)

0,0
0,1
0,2

α = 0О

β = 0О 

α = 0О

β = 20О

φ, град.
60 
30 
0 
90 

h(φ)

0,0
0,1
0,2

φ, град.
60 
30 
0 
90 

h(φ)

0,0
0,1
0,2

α = 20О

β = 0О 

α = 20О

β = 20О

 
 

Рисунок 3. Профиль вдоль окружности конуса при некоторых углах  

установки α и β дисков 

 
В результате аппроксимации получены следующие аналитические 

выражения: 

 

Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

8

(
)

;
205
,0
138
,0
331
,0

10
50
,9
10
69
,2
10
43
,2
,
-4
2
-3
2
-3

−
⋅
+
⋅
+

+
⋅
⋅
⋅
+
⋅
⋅
+
⋅
⋅
−
=

β
α

β
α
β
α
β
α
К
h
 
(4)

(
)

;
23
,1
030
,0
210
,0

10
71
,3
10
13
,3
10
19
,3
,
-3
2
-4
2
-3

+
⋅
−
⋅
+

+
⋅
⋅
⋅
+
⋅
⋅
+
⋅
⋅
=
∆

β
α

β
α
β
α
β
α
Н
h
 
(5)

(
)

,
26
,8
032
,0
128
,0
10
26
,2
10
38
,5
10
15
,3
,
-4
2
-4
2
-3

+
⋅
+
⋅
−
−
⋅
⋅
⋅
−
⋅
⋅
+
⋅
⋅
=
β
α
β
α
β
α
β
α
N
 
(6)

 

где hК и ∆hН измеряются в сантиметрах, 

N – в килоВаттах, 

α, β – в градусах. 

 
Статистическая значимость коэффициентов полученных полиномов 

оценивалась с помощью критерия Фишера. 

 
Полученные аналитические формулы hК(α, β), ∆hН(α, β), N(α, β) мо
гут использоваться для предварительной оценки эффективности УПО в за
висимости от углов установки дисков. Формулы могут быть рекомендова
ны конструкторам при организации серийного производства УПО, а также 

в лесных хозяйствах для настройки орудий в зависимости от решаемых за
дач. 

 
Для удобства количественного анализа каждая из поверхностей от
клика представлена с помощью линий уровня ( 

 

Рисунок 4) Факторное пространство (α, β) можно условно разделить на две 

области: благоприятную (затемнена на рисунке), в которой данный крите
рий оптимизации принимает искомое максимальное или минимальное зна
чение, и неблагоприятную. Для обоснования граничного уровня критерия, 

который задает границу между областями, можно руководствоваться сле
дующими правилами: благоприятная область должна занимать значитель
ную долю факторного пространства (10–30 %), по возможности не вклю
Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

9

чать области резкого изменения функции, либо привязана к каким-либо 

нормативным значениям каждого из критериев [5,6]. В данном случае, в 

качестве границ между благоприятной и неблагоприятной областями вы
браны следующие изолинии: для функции hК(α, β) изолиния 10 см; для 

∆hН(α, β) изолиния 10 см; для N(α, β) изолиния 8 кВт. 

hК, см

0

hК(α, β) 

α, град.

20

∆hН(α, β) 

N, кВт

N(α, β) 

10

20

β, град.

10

∆hН, см

0

α, град.

20
10

20

β, град.

10

0

α, град.

20
10

20

β, град.

10

 
 

Рисунок 4. Поверхности отклика к оптимизации углов α и β установки 

дисков универсального почвообрабатывающего орудия 

Научный журнал КубГАУ, №97(03), 2014 года 
 

http://ej.kubagro.ru/2014/03/pdf/34.pdf 

10

 
Полученные карты оптимизации позволяют конструктору быстро ви
зуально выбрать углы установки дисков α и β, чтобы достигались опти
мальные значения каждого из показателей эффективности. 

 
При наложении друг на друга благоприятных областей для трех кри
териев получаем общую оптимальную область сложной формы (Рисунок 5, 

внизу справа). Анализ расположения и формы оптимальной области пока
зывает, что угол α должен лежать в диапазоне 19...26О, угол β – в диапа
зоне 18...24О. 

 

hК(α, β), см 

α, град. 

β, 

град.

0

0
10
20

10

20

∆hН(α, β), см 

N(α, β), кВт 
hК(α, β) ∩ ∆hН(α, β) ∩ N(α, β) 

α, град.

β, 

град.

0

0
10
20

10

20

α, град.

β, 

град.

0

0
10
20

10

20

α, град. 

β, 

град.

0

0
10
20

10

20

 
 

Рисунок 5. Карты оптимизации углов α и β установки дисков универсаль
ного почвообрабатывающего орудия 

Доступ онлайн
49 ₽
В корзину