Построение скоринговых карт с использованием модели логистической регрессии
Покупка
Основная коллекция
Тематика:
Управление рисками
Издательство:
Науковедение
Автор:
Сорокин А.
Год издания: 2014
Кол-во страниц: 29
Дополнительно
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
Интернет-журнал «НАУКОВЕДЕНИЕ» Выпуск 2, март – апрель 2014 Опубликовать статью в журнале - http://publ.naukovedenie.ru Институт Государственного управления, права и инновационных технологий (ИГУПИТ) Связаться с редакцией: publishing@naukovedenie.ru 1 http://naukovedenie.ru 180EVN214 УДК 330.43, 519.2, 519.86 Сорокин Александр Сергеевич ФГБОУ ВПО «Московский государственный университет экономики, статистики и информатики» Россия, Москва1 Доцент кафедры Математической статистики и эконометрики Московский финансово-промышленный университет «Синергия» Россия, Москва2 Доцент кафедры Бизнес-статистики Кандидат экономических наук E-Mail: alsorokin@mail.ru Построение скоринговых карт с использованием модели логистической регрессии Аннотация: В банковской сфере при управлении кредитными рисками одна из ключевых задач — оценка кредитоспособности заемщиков. Результаты оценки индивидуальных рисков являются основой для анализа рисков всего кредитного портфеля. Оценка риска невозврата кредита по конкретному заемщику на практике осуществляется в рамках двух основных подходов — на основе субъективного заключения экспертов или на основе автоматизированных систем скоринга. В основе построения скоринговой системы могут браться различные статистические модели. Эти модели могут быть получены методами линейной регрессии, логистической регрессии, дискриминантного анализа, деревьев решений, нейронных сетей и др. Однако логистическая регрессия является наиболее часто используемой на практике математической моделью для построения скоринговой карты. Настоящая работа посвящена рассмотрению различных подходов и методик к построению скоринговых карт на базе логистической регрессии, а также проблемам, которые могут возникать при построении скоринговых моделей. В статье рассматривается методика эконометрического моделирования вероятности дефолта по кредитам на основе модели логистической регрессии. Акцентируется внимание на методологических аспектах построения модели. Основные проблемы построения модели иллюстрируются практическими расчетами. Показывается методика перевода полученных коэффициентов модели логистической регрессии в скоринговую карту. Приводится пример построения скоринговой карты. Авторские выводы и рекомендации могут быть использованы специалистами по управлению рисками в коммерческих банках при построении скоринговых систем и проверки их работы. Ключевые слова: Кредитный риск; кредитный скоринг; логистическая регрессия; коммерческий банк; управление рисками; скоринговые карты; категоризация количественных переменных; информационное значение, вес категорий предикторов; валидация модели. Идентификационный номер статьи в журнале 180EVN214 1 119501, г. Москва, ул. Нежинская, 7, МЭСИ, кафедра Математической статистики и эконометрики 2 125190, г. Москва, Ленинградский пр-кт, д. 80, МФПУ «Синергия», кафедра Бизнес-статистики
Интернет-журнал «НАУКОВЕДЕНИЕ» Выпуск 2, март – апрель 2014 Опубликовать статью в журнале - http://publ.naukovedenie.ru Институт Государственного управления, права и инновационных технологий (ИГУПИТ) Связаться с редакцией: publishing@naukovedenie.ru 2 http://naukovedenie.ru 180EVN214 1. Введение Наибольшее распространение в банковской сфере получил кредитный скоринг. Кредитный скоринг3 можно опередить как метод начисления потенциальным заемщикам определенного количества баллов на основе информации о его социальнодемографическом положении, кредитной истории, параметрах запрашиваемого кредита, и принятие решения о выдаче или об отказе в кредите на основе набранного суммарного количества баллов. На настоящий момент банки предъявляют повышенные требования к рисканалитике в связи с участившимися случаями мошенничества и ростом числа невозвратных кредитов. По данным Национального бюро кредитных историй по состоянию на 1 января 2014 года потери кредиторов от мошенников составили 153 млрд руб., тогда как годом ранее их объем был 67 млрд руб4. На практике возникает задача не только принятия решения в отказе или выдачи кредита конкретному заемщику на основе набранного количества баллов, но и задача определения оптимального минимального количества набранных баллов для выдачи кредита. Вторая задача решается на основе анализа распределения баллов «надежных» и «ненадежных» заемщиков на основе полученной скоринговой карты и тесна связана с анализом соотношения риска и доходности во всем кредитном портфеле банка. Таким образом, кредитный скоринг является инструментом снижения рисков невозврата кредитов, а также помогает определить оптимальную структуру кредитного портфеля, корректировать процентные ставки по кредитам в зависимости от уровня риска. В большинстве коммерческих банков скоринговые модели являются собственными разработками с различными методиками на основе данных о заемщиках конкретного банка прошлых лет, или являются готовыми решениями специализированных фирм на основе данных о заемщиках нескольких банков или финансовых институтов5. И в первом и втором случае методики построения скоринговых карт, как правило, составляют коммерческую тайну. Методы построения скоринговых моделей и на их основе скоринговых карт разбираются в таких работах как (Naeem, 2006); (Lewis, 1992); (Allison, 1999); (Scallan 1999); (Anderson, 2007). Обзор практических статей по кредитном скорингу содержит работа (Mays et al., 2001). 2. Подготовка данных для построения скоринговой модели 2.1. Исходная информационная база В основе построения скоринговых карт лежат статистические модели. Для их построения должна быть достаточная и качественная информация о заемщиках банка. Качество исходных статистических данных для построения статистической модели определяет ее точность прогнозирования и успех разработки скоринговой системы в целом. Разработка скоринговой модели строится на анализе предыдущего кредитного опыта. Достаточный объем информации — это одна из главных предпосылок построения модели. Количество данных может варьироваться в зависимости от конкретных моделей, но в целом данные должны удовлетворять требованиям статистической значимости и случайности. Исходные данные для построения модели могут содержать внутренние данные анкет 3 Этот вид скоринга называют еще скорингом заявок (от англ. application-scoring). 4 По данным ОАО «НБКИ», см. http://www.nbki.ru/press/pressrelease/?id=2152. 5 Например, такие услуги предоставляют компании Equifax, Experian, Scorto, FICO и др.
Интернет-журнал «НАУКОВЕДЕНИЕ» Выпуск 2, март – апрель 2014 Опубликовать статью в журнале - http://publ.naukovedenie.ru Институт Государственного управления, права и инновационных технологий (ИГУПИТ) Связаться с редакцией: publishing@naukovedenie.ru 3 http://naukovedenie.ru 180EVN214 заемщиков банка, а также внешние данные кредитных историй, содержащие сотни тысяч записей6. В идеале модели скоринга должны применятся в отношении тех же кредитных продуктов, сектора рынка, и экономической ситуации, которые легли в основу данных о прошлом кредитном опыте. Например, сведения по потребительским кредитам не могут адекватно использоваться при разработке скоринговой карты по автокредитованию. Для построения точной скоринговой модели исходные данные должны обладать определенность исторической давностью. Это требование определяет период, за который собираются данные. Например, данные по потребительским кредитам, одобренным 3 месяца назад, не подойдут для построения модели, одобренным 3 года назад скорее подойдут, а 10 лет назад будут являться достаточно устаревшими. Исторический период данных для построения модели определяется, как правило, видом скоринга и видом кредитования, а также требованиям надзорных органов.7 Данные об определенном типе клиентов необходимо исключить из исходной информационной базы. Это могут быть нетипичные клиенты — мошенники, сотрудники банка, VIP клиенты, умершие клиенты, несовершеннолетние, двойные заявки, кредиты по украденным картам и др. Также из базы должны быть исключены кредиты с аномально большими суммами кредитов, нестандартными условиям погашения, нетипичными целями займа. Дополнительным критерием отбора данных может служить вид кредитования или регион рынка, для которого строиться скоринговая карта. Иногда использование нескольких скоринговых карт для одного портфеля по виду кредитования обеспечивает лучшее дифференцирование риска, чем использование одной скоринговой карты. Для реализации этого подхода часто перед построением скоринговой модели исходную базу клиентов сегментируют с помощью многомерных статистических методов, например, кластерного анализа, деревьев решений или эвристическими методами. 2.2. Определение зависимой переменной Выбор зависимой переменной определяется целью построения скоринговой модели. Цели могут быть общими, например, сокращение потерь по новым кредитным счетам, и конкретными, например, сокращение числа дефолтов по одобренным заявкам в течение 3-х месяцев после принятия положительного решения. Зависимая переменная может принимать количественные и качественные значения. Примером количественной целевой переменной является средняя сумма, которую погасит заемщик по просроченному кредиту. В скоринге заявок зависимая переменная принимает категориальную шкалу измерения. На этапе определения зависимой переменной заемщиков делят на три группы: «плохие», «хорошие» и «неопределенные». Для мошенников, банкротов и безнадежных кредитов критерий определения «плохого» заемщика однозначен. В отношении остальных заемщиков банка критерием определения «плохого клиента» является, как правило, количество дней просрочки платежа по кредитам. К группе «неопределенных» клиентов могут относить клиентов с недостаточной кредитной историей, имеющие небольшую допустимую просрочку платежа и др. При построении скоринговой карты используются только клиенты, определенные 6 Примером такой базы могут служить, например, данные трех кредитных Бюро, содержащие информацию о 50 тыс. заемщиках в 28 переменных почти по 300 тыс. кредитам на сайте https://www.tcsbank.ru/tournament/. 7 Например, для скоринга заявок потребительских кредитов обычно это данные за последние 2–5 лет, для поведенческого скоринга — 6–12 месяцев.