Основы геотехники / Fundamentals of geotechnics
Покупка
Новинка
Тематика:
Теоретические основы строительства
Издательство:
МИСИ-Московский государственный строительный университет
Год издания: 2024
Кол-во страниц: 47
Дополнительно
Вид издания:
Учебно-методическая литература
Уровень образования:
ВО - Бакалавриат
ISBN: 978-5-7264-3569-5
Артикул: 855668.01.99
В учебно-методическом пособии представлены задания, которые выносятся на практические занятия, а также присутствуют в вопросах для выполнения контрольной работы и зачета; приведены типовые контрольные вопросы.
Для обучающихся по направлению подготовки 08.03.01 Строительство.
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
УДК 624.1 ББК 38.58 Ч-91 Рецензенты: кандидат технических наук, доцент В.Е. Русанов, генеральный директор ООО «НИЦ Тоннельной ассоциации»; доктор технических наук, профессор В.В. Знаменский, профессор кафедры механики грунтов и геотехники НИУ МГСУ Чунюк, Дмитрий Юрьевич. Ч-91 Основы геотехники / Fundamentals of geotechnics [Элек-тронный ресурс] : учебно-методическое пособие / Д.Ю. Чунюк, Н.Г. Лобачева, С.М. Сельвиян ; Мини-стерство науки и высшего образования Российской Федерации, Национальный исследовательский Московский государственный строительный университет, кафедра механики грунтов и геотехники. — Электрон. дан. и прогр. (2,5 Мб). — Мос-ква : Издательство МИСИ – МГСУ, 2024. — URL: http://lib.mgsu.ru. — Загл. с титул. экрана. ISBN 978-5-7264-3569-5 (сетевое) ISBN 978-5-7264-3570-1 (локальное) В учебно-методическом пособии представлены задания, которые выносятся на практические занятия, а также присутствуют в вопросах для выполнения контрольной работы и зачета; приведены типовые контрольные вопросы. Для обучающихся по направлению подготовки 08.03.01 Строительство. Учебное электронное издание © ФГБОУ ВО «НИУ МГСУ», 2024
Учебное электронное издание Чунюк Дмитрий Юрьевич, Лобачева Наталья Геннадиевна, Сельвиян Серафима Михайловна Основы геотехники / Fundamentals of geotechnics Учебно-методическое пособие Редактор Н.А. Котова Корректор В.К. Чупрова Верстка и дизайн титульного экрана Д.Л. Разумного Для создания электронного издания использовано: Microsoft Word 2010, Adobe InDesign CS6, ПО Adobe Acrobat Подписано к использованию 22.10.2024. Объем данных 2,5 Мб. Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский Московский государственный строительный университет». 129337, Москва, Ярославское ш., 26. Издательство МИСИ – МГСУ. Тел.: (495) 287-49-14, вн. 14-23, (499) 183-91-90, (499) 183-97-95. E-mail: ric@mgsu.ru, rio@mgsu.ru
Оглавление PRACTICAL LESSON 1....................................................................................................................................5 Example 1.1. Determining the type of sandy soil.........................................................................................8 Example 1.2. Determine the type and variety of coarse sand......................................................................9 Example 1.3. Determine the type and type of clayey soil............................................................................9 Example 1.4. Determine the design resistance of a stiff clay loam..............................................................9 Example 1.5. Determine the design resistance of coarse, medium-density sand saturated with water.............................................................................................................................. 10 PRACTICAL LESSON 2.................................................................................................................................. 12 Determination of the deformation characteristics of soils......................................................................... 12 PRACTICAL LESSON 3.................................................................................................................................. 16 Construction of characteristic épure (diagrams) of the distribution of natural stresses in a mass of soil..................................................................................................................... 16 Example 3.1. Distribution of stresses from dead-weight of soil in homogeneous massif.......................... 16 Example 3.2. Distribution of stresses from dead weight of soil in the soil mass represented by several soil layers............................................................................................................. 18 Example 3.3. Distribution of stresses from self-weight of soil in the soil mass represented by several layers of soil, one of which is a water bearing layer............................................ 21 PRACTICAL LESSON 4..................................................................................................................................23 Determination of stresses under the action of local uniformly distributed pressure.................................23 Example 4.1. Determination of the values of compressive stresses σz by the depth of the base................25 Example 4.2. Determination of settlement by the layer-by-layer summation method...............................26 Example 4.3. Determination of foundation settlement by the equivalent layer method............................ 30 Example 4.4. Determination of foundation settlement using the linearly deformable layer method......... 32 PRACTICAL LESSON 5.................................................................................................................................. 35 The active and passive pressures of soil on retaining walls....................................................................... 35 Example 5.1. Determine the value of the active pressure Ea on the wall of height H = 12 m with homogeneous soil backfill φ = 31°; γ = 21 kN/m3................................................................ 35 Example 5.2. Calculate the ordinates of the active pressure of the three-layer backfill............................ 36 Example 5.3. Determination the value of active pressure generated by loads applied on the edge of the excavation .................................................................................................................. 37 Example 5.4. Calculate the sum of moments from horizontal forces of active ground pressure on the enclosing structure (data from examples 5.1 and 5.3)................................................ 38 Example 5.5. Determine the stresses in the wall contact with the base (see fig. 5.2) when the base width B = 6 m and the average normal stress σ = 200 kPa..................................... 38 Example 5.6. Determine the ultimate height of the vertical slope of the excavation. Soil: sand, angle of internal friction φ = 33°, specific coupling c = 2 kPa, specific weight of soil γ = 19,7 kN/m3.................................................................................. 39 PRACTICAL LESSON 6.................................................................................................................................. 41 Determining the type of foundation........................................................................................................... 41 Example 6.1. The fragment shown in fig. 6.4 shows the contour of the building and 3 boreholes. Construct a geotechnical section between axes 1 and 2 along axis A. The lithological columns for the wells are given in table 6.1. The distances between wells 10–15 and 15–20 are 24 and 34 m, respectively................................................................................ 43 Determination of the footing depth based on the engineering-geological, hydrogeological, climatic and structural factors.............................................................................................. 45 Bibliographic list............................................................................................................................................... 47
Practical Lesson 1 A distinction is made between physical, strength and deformation characteristics of soil. Physical characteristics are divided into basic, derivative and classification characteristics. The basic physical characteristics of soil (table 1.1). The basic are the characteristics determined from experience. Table 1.1 Basic physical characteristics of soil Name Designation Dimension Calculation formula Soil density ρ kg/m3 ρ = G / V Specific gravity of soil γ kN/m3 γ =ρg Soil particle density ρs kg/m3 ρs = Gs / Vs Specific weight of soil particles γs kN/m3 γs = ρsg Soil moisture W in fractions of one or % W = Gw / Gs Humidity on the plasticity boundary Wp in fractions of one or % Wp = Gw,p / Gs Moisture on the yield boundary WL in fractions of one or % WL = Gw,L / Gs Derived physical characteristics of the soil (table 1.2). Table 1.2 Derived physical characteristics of soil Name Designation Dimension Calculation formula Density of drysoil ρd kg/m3 ρd = ρ / (1 + W) Specific weight of dry soil γd kN/m3 γd = ρdg = γ / (1 + W) Porosity coefficient e in fractions of one or % e = (ρs – ρd) / ρd = ρs / ρd – 1 Porosity n in fractions of one or % n = (ρs – ρd) / ρs = 1 – ρd / ρs Classification physical characteristics of soil (table 1.3). Table 1.3 Derived physical characteristics of soil Name Designation Dimension Calculation formula Number of plasticity Ip in fractions of one or % Ip = WL – Wp Fluidity index IL in fractions of one or % IL = (W – Wp)/Ip Water saturation coefficient Sr in fractions of one or % Sr = (ρsW )/(ρwe) Total moisture capacity Wsat in fractions of one or % Wsat = (ρw /ρs)e (respond Sr = 1) The dusty-clayey soils are characterized by the predominance of dusty and clayey particles in their composition and depending on the number of plasticity Ip are allocated by type according to table 1.4. Table 1.4 Type of silty-clay soils Number of plasticity, % Sand dust 1 ≤ Ip ≤ 7 Loam 7 < Ip ≤ 17 Clays 17 < Ip
Dusty-clay soils are distinguished by consistency characterized by the flowability index IL, according to table 1.5. Table 1.5 Variety of dusty-clay soils Flow index Sandy loam Hard IL < 0 Plastic 0 ≤ IL ≤ 1 Fluidity 1 < IL Loams and clays Hard IL < 0 Half-hard 0 ≤ IL < 0,25 Hard-plastic 0,25 ≤ IL < 0,5 Soft-plastic 0,5 ≤ IL < 0,75 Fluid-plastic 0,75 ≤ IL ≤ 1 ? 1 < IL Coarse-clastic and sandy soils are divided into types depending on their particle-size composition according to table 1.6. The granulometric composition of the soil is the content by weight of groups of particles (fractions) of different size in relation to the total mass of absolutely dry soil, expressed as a percentage. Table 1.6 Classification of sandy soils depending on particle size distribution Variety of coarse clastic soils and sands Particle size, mm Particle content, % bymass Gravel > 2 > 50 Sand Gravelly > 2 > 25 Coarse > 0,5 > 50 Medium coarse > 0,25 > 50 Small > 0,1 ≥ 75 Dusty > 0,1 < 75 Depending on the coefficient of porosity, there are dense, medium dense and loose sands (table 1.7). Table 1.7 Stacking density of sandy soils Variety of sands Porosity coefficient e Gravelly, coarse, mediumcoarse Small Dusty Dense е < 0,55 е < 0,6 е < 0,6 Medium Dense 0,6 ≤ е ≤ 0,7 0,6 ≤ е ≤ 0,75 0,6 ≤ е ≤ 0,8 Loose е > 0,7 е > 0,75 е > 0,8 Sands and coarse clastic soils, according to the classification, can be low-moisture, wet and saturated with water (table 1.8).