Паразитология, 2024, № 2
научный журнал
Покупка
Новинка
Тематика:
Паразитология
Издательство:
Наука
Наименование: Паразитология
Год издания: 2024
Кол-во страниц: 92
Дополнительно
Тематика:
ББК:
УДК:
ОКСО:
ГРНТИ:
- 34.21: Эмбриология
- 34.41: Морфология человека и животных
- 34.01.09: История биологии. Персоналия
- 34.03.17: Эволюционное учение
- 34.03.21: Таксономия и номенклатура в биологии
- 34.15.59: Молекулярные критерии биосистематики
- 34.19.17: Цитоморфология
- 34.23.35: Популяционная генетика
- 34.23.41: Экологическая генетика
- 34.33.15: Зоология беспозвоночных
- 34.33.19: Энтомология
- 34.33.23: Зоопаразитология
- 34.35.17: Популяция и среда
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
Российская академия наук ПАРАЗИТОЛОГИЯ Том 58 № 2 2024 Март–Апрель Журнал основан в 1967 году Выходит 6 раз в год ISSN: 0031-1847 Журнал издается под руководством Отделения биологических наук РАН Главный редактор О.Н. Пугачев Редакционная коллегия: К.В. ГАЛАКТИОНОВ, С.Г. МЕДВЕДЕВ (заместители главного редактора), Г.И. АТРАШКЕВИЧ, В.В. ГЛУПОВ, Е.П. ИЕШКО, С.С. КОЗЛОВ, Э.И. КОРЕНБЕРГ, М.В. КРЫЛОВ , С.А. ЛЕОНОВИЧ, С.В. МИРОНОВ, А.Н. ПЕЛЬГУНОВ, А.Ю. РЫСС, С.Э. СПИРИДОНОВ, А.А. СТЕКОЛЬНИКОВ, А.О. ФРОЛОВ, D.I. GIBSON, E.P. HOBERG, B. KRASNOV, К.Е. НИКОЛАЕВ (ответственный секретарь), А.Г. ГОНЧАР (секретарь) Заведующая редакцией Л.Л. Случевская Адрес редакции: 199034, Россия, г. Санкт-Петербург, Университетская набережная, 1 Телефон: (812) 328-12-12; E-mail: Parazitologiya@zin.ru Москва ФГБУ «Издательство «Наука» © Российская академия наук, 2024 © Редколлегия журнала «Паразитология» (составитель), 2024
СОДЕРЖАНИЕ Том 58, № 2, 2024 Phylogenetic relationships of Mesocestoides Vaillant, 1863 tetrathyridia from small mammals of eastern Russia and Alaska based on 18s rRNA gene 91 Pospekhova N. A., Pereverzeva V. V., Dokuchaev N. E., Primak A. A. Сингоспитальность и гостальные связи эриофиоидных клещей (Acariformes, Eriophyoidea): таксономический анализ комплексов видов клещей-галлообразователей на бореальных древесных двудольных 101 Сухарева С. И., Аристов Д. А., Ганкевич В. Д., Десницкий А. Г., Озман-Салливан С. К., Четвериков Ф. Е. Оценка вирулентности изолятов некоторых видов энтомопатогенных анаморфных аскомицетов (Fungi, Ascomycota) в отношении взрослых особей клеща Ixodes persulcatus 124 Борисов Б. А., Беспятова Л. А., Леднёв Г. Р., Левченко М. В., Бугмырин С. В. Фауна и обилие иксодид (Parasitiformes, Ixodidae) на острове Аскольд (Приморский край): уникальность, инфицированность патогенами 136 Никитин А. Я., Зверева Т. В., Вержуцкая Ю. А., Кайсарова Н. А., Солодкая Н. С., Сафонова Н. В., Гордейко Н. С., Андаев Е. И., Колесникова В. Ю., Балахонов С. В. Морфологические основы трех классификаций отряда блох (Insecta, Siphonaptera) 147 Медведев С. Г. VII Съезд Паразитологического общества: Итоги и актуальные задачи (Петрозаводск, 16–20 октября 2023 г.) 169 Иешко Е. П., Бугмырин С. В., Матвеева Е. М., Яковлева Г. А.
CONTENTS Vol. 58, № 2, 2024 Phylogenetic relationships of Mesocestoides Vaillant, 1863 tetrathyridia from small mammalls of eastern Russia and Alaska based on 18s rRNA gene 91 Pospekhova N. A., Pereverzeva V. V., Dokuchaev N. E., Primak A. A. Synhospitality of eriophyoid mites (Acariformes, Eriophyoidea): taxonomic analysis of gall-forming mite species complexes on boreal woody dicotyledons 101 Sukhareva S. I., Aristov D. A., Gankevich V. D., Desnitskiy A. G., Ozman-Sullivan S. K., Chetverikov P. E. Evaluation of virulence of isolates of certain species of Entomopathogenic anamorphic ascomycetes (Fungi: Ascomycota) in relation to adult individuals of the tick Ixodes persulcatus 124 Borisov B. A., Bespyatova L. A., Lednev G. R., Levchenko M. V., Bugmyrin S. V. Fauna and abundance of ixodids (Parasitiformes, Ixodidae) on Askold island (Primorsky krai): uniqueness, infection with pathogens 136 Nikitin A. Ja., Zvereva T. V., Verzhuckaja Ju. A., Kajsarova N. A., Solodkaja N. S., Safonova N. V., Gordejko N. S., Andaev E. I., Kolesnikova V. Yu., Balahonov S. V. Morphological basis of the three classifications of the order of fleas (Insecta, Siphonaptera) 147 Medvedev S. G. VII Congress of the Society of parasitologists: current results and challenges (16–20 October, 2023. Petrozavodsk) 169 Ieshko E. P., Bugmyrin S. V., Matveeva E. M., Yakovleva G. A.
ПАРАЗИТОЛОГИЯ, 2024, том 58, № 2, с. 91–100. УДК 576.895.121:599.323+599.363 PHYLOGENETIC RELATIONSHIPS OF MESOCESTOIDES VAILLANT, 1863 TETRATHYRIDIA FROM SMALL MAMMALS OF EASTERN RUSSIA AND ALASKA BASED ON 18S rRNA GENE © 2024 N. A. Pospekhova a, *, V. V. Pereverzeva a, N. E. Dokuchaev a, A. A. Primak a a Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences, Magadan, 685000 Russia *e-mail: posna@ibpn.ru Received October 05, 2023 Revised January 01, 2024 Accepted January 12, 2024 A fragment of 875 bp of the 18S rRNA gene was studied in 12 samples of Mesocestoides tetrathyridia from small mammals of 7 species collected in geographically distant localities. Five haplotypes were identified, differing from each other by 27 nucleotide substitutions in 24 sites. It has been found that the 18S rRNA haplotypes belong to two genetically distinct haplogroups. Molecular diversity indices were calculated for each of them. The conducted analysis allowed to suggest the following: 1) Mesocestoides sp. haplogroups A and B belong to two different species, but do not belong to any of the confirmed species of the genus; 2) the deletion of bp 729–747 and the insertion at site 761 of guanine can be regarded as a genetic marker for the species Mesocestoides litteratus. Keywords: Mesocestoides, tetrathyridium, insectivores, rodents, 18S rRNA, phylogenetic analysis, genetic marker DOI: 10.31857/S0031184724020017, EDN: ypsabz The metacestode stage (tetrathyridium) of cestodes of the genus Mesocestoides, widespread parasites of predatory mammals, has no clear morphological characteristics that diagnostics usually relies on (in particular, there is no proboscis) (Kozlov, 1978; Dokuchaev, Gulyaev, 2004; Konyaev et al., 2011; Zaleśny, Hildebrand, 2012; Tokiwa et al., 2014). It is not uncommon to find larval stages of Mesocestoides sp. in rodents, or M. lineatus in carnivorous mammals in the East of Russia (Gubanov, 1964; Gubanov, Fedorov, 1970; Domnich, 1985; Odnokurtsev, 2015). In addition, M. kirbyi Chandler, 1944 (Domnich, Obushenkov, 1983) and M. paucitesticulus (Konyaev et al., 2011) were recorded in this territory, and tetrathyridia that may belong to M. kirbyi, or M. perlatus (Goeze, 1782) were found in shrews from the Northern Okhotsk region and Chukotka (Dokuchaev, Gulyaev, 2004). 91
The first attempt to study the Mesocestoides tetrathyridia from Magadan region performed by molecular genetic methods (Pospekhova et al., 2018) had made it possible to outline some phylogenetic relationships within the genus. The subsequent work, based on the variability of the 12S rRNA gene fragment in Mesocestoides sp. (Pospekhova et al., 2023) suggested that none of the studied samples of tetrathyridia from insectivores and rodents belong to any of the confirmed species of the genus, namely M. lineatus (Goeze, 1782), M. litteratus (Batsch, 1786), M. canislagopodis (Rudolphi, 1810) (Krabbe 1865), M. corti (Hoeppli 1925) (= M. vogae) (Etges 1991)) и M. melesi Yanchev and Petrov 1985 (Yanchev, 1986; Gubány, Eszterbauer, 1998; Nickisch-Rosenegk et al., 1999; Padgett, Boyce, 2005; Literák et al., 2006; Hrčkova et al., 2011; Skírnisson et al., 2016; Bajer et al., 2020). The purpose of this work was to determine the nucleotide sequences of the 18S rRNA nuclear gene fragment in tetrathyridia from 7 species of small mammals in the East of Russia and Alaska (USA) and to perform a preliminary analysis of the relationships between the haplotypes of the studied Mesocestoides with each other, and also with the data available in GenBank. MATERIALS AND METHODS Tetrathyridia samples were obtained as a result of theriological studies of rodents and insectivores conducted by N.E. Dokuchaev in 2002–2019; small mammal collection sites are shown in Fig. 1 and Table 1. Figure 1. Collection sites for intermediate hosts of Mesocestoides. The numbers correspond to the sample numbers from Table 1. 92
Table 1. Mesocestoides tetrathyridia specimens used in this work Sample number Haplotypes Host Location GenBank number 11 Mes18S_1 Clethrionomys rutilus Kulu settlement, Magadan region MK634547 12 Mes18S_1 Sorex isodon Bolshoy Shantar Island, Khabarovsk Territory MK634546 13 Mes18S_1 Craseomys rufocanus Bolshoy Shantar Island, Khabarovsk Territory MK634544 28 Mes18S_4 Craseomys rufocanus Umara riwer floodplain, Magadan region MN031874 47 Mes18S_3 Micromys minutus Georgievka village Khabarovsk Territory OP161928 48 Mes18S_1 Craseomys rufocanus Umara riwer floodplain, Magadan region OP161977 49 Mes18S_5 Sorex cinereus Fairbanks, Alaska, USA OP161923 50 Mes18S_1 Sorex caecutiens «Contact» station, Magadan region OP161924 51 Mes18S_2 Craseomys rufocanus Nedorazumenia island, Magadan region OP161926 52 Mes18S_1 Sorex caecutiens Yakutsk, Republic of Sakha (Yakutia) OP161922 53 Mes18S_1 Sorex tundrensis Yakutsk, Republic of Sakha (Yakutia) OP161927 54 Mes18S_2 Sorex caecutiens Duckcha river floodplane, Magadan region OP161921 Notes. Gathering locations, sample numbers and GenBank numbers are shown. The work used samples of tetrathyridia from 4 species of shrews of the order Eulipotyphla (Insectivores), and three species of rodents (Rodentia). The localization of tetrathyridia is somewhat different in different hosts. According to our observations, in shrews they are more often located in the liver and the large lymphoid organ; in rodents, in the body cavity. Some Mesocestoides host names that we previously contributed to GenBank (Myodes rutilus and M. rufocanus) do not correspond to the current classification system, thus, in the text we use the names Clethrionomys rutilus and Craseomys rufocanus, respectively (Kryštufek, Shenbrot, 2022). Before DNA extraction from alcohol-fixed material, tetrathyridia with tissue localization were freed from cysts and washed in alcohol of the same concentration. Isolation and purification of total DNA was carried out using the phenol-chloroform method (Sambrook et al., 1989). Amplification of 875 base pairs (bp) (131–1005 bp from the beginning of the gene) of the 18S rRNA gene fragment was carried out using newly designed primers Micr18SL61 gcc ttt ata cgg tga aac cgc gaa tgg (61–89 bp from the start of the gene) and Micr18SR14028 caa tct gtc aat cct cat agt gtc cgg cc (1428–1456 bp from the start of the gene). Polymerase chain reaction conditions followed the protocol of Literak et al., 2004: denaturing step 94оC – 5 min; then 40 cycles: 94оС – 1 min, 52оС – 1 min, 72оС – 2 min; final stage 72°C – 7 min. The amplified sections of nuclear DNA were purified and prepared for sequencing according to standard methods 93
using the DiatomTM DNA Clean-Up reagent kit from Isogen Laboratory. The structure of the nucleotide sequence of the 18S rRNA gene was determined from 131 bp from the beginning of the gene using the Micr18SL61 primer according to the standard method using Big Dye Terminator DNA cyclic sequencing kits (Applied Biosystems, v. 3.1) and an ABI Prism 3500xL genetic analyzer (Applied Biosystems, USA). The 18S rRNA gene fragment was mapped relative to the complete nucleotide sequence of this gene in Mesocestoides corti GenBank No. AF286984 (Olson et al., 2001). Haplotypes of the 18S rRNA gene fragment of the studied samples of Mesocestoides sp. were assigned the abbreviation Mes18S. For phylogenetic analysis of the obtained nucleotide sequences of the 18S rRNA gene, information about the corresponding fragment of this gene from samples belonging to the genus Mesocestoides was taken from GenBank (Table 2). Table 2. Nucleotide sequences of 18S rRNA taken for comparison from GenBank Cestode species GenBank number, author Country Host M. corti GU442130 (Piseddu et al., unpublished) Italy Canis familiaris M. corti AF286984 (Olson et al., 2001) Switzerland laboratory mouse M. litteratus JN088190 (Zalesny, Hildebrand, 2012) Poland Myodes glareolus M. litteratus MN512711 (Bayer et al., 2020) Poland Vulpes vulpes M. litteratus MN512709 (Bayer et al., 2020) Poland Vulpes vulpes M. melesi MN401346 (Bayer et al., 2020) Poland Meles meles M. melesi MN401347 (Bayer et al., 2020) Poland Myodes glareolus Mesocestoides sp. EF095248 (Waeschenbach et al., 2007) Bulgaria Apodemus agrarius Mesocestoides sp. AF119678 (Crosbie et al., 2000) USA Canis latrans The dendrogram of 18S rRNA gene haplotypes was constructed using the maximum likelihood (ML) method based on the Kimura biparametric distance model selected using the Bayesian information criterion. The stability of branch nodes was assessed using the bootstrap method (500 iterations). Some of the data taken for comparison in GenBank had identical sequences; to simplify the structure of the ML–phylogenetic tree, we included in the analysis only one sequence from a number of identical ones. The nucleotide sequence of the corresponding fragment of the 18S rRNA gene GQ260092 of Echinococcus granulosus (Jia, Yan, 2009, unpublished) was used as an outgroup. Genetic data analysis was carried out using MEGA software packages 10.0.2.74 (Tamura et al., 2013) and ARLEQUIN ver. 3.5 (Excoffier et al., 2005). RESULTS AND DISCUSSION Characteristics of nucleotide sequences of Mes18S_1-Mes18S_5 haplotypes of the 18S rRNA gene fragment of Mesocestoides sp. The 875 bp fragment of the 18S rRNA gene was sequenced for twelve samples of Mesocestoides sp. (Table 1). Five Mes18S haplotypes were identified. Among them, we deteced 27 nucleotide substitutions (ns) at 24 sites (Fig. 2). 94
Figure 2. Haplotypes Mes18S_1– Mes18S_5 of the 18S rRNA gene fragment of Mesocestoides sp. Substitution sites are shown relative to the Mes18S_1 nucleotide sequence from the beginning of the 18S rRNA gene. The Mes18s_1 haplotype included 7 nucleotide sequences (MK634544, MK634546, MK634547, OP161922, OP161924, OP161927, OP161977) and Mes18s_2 included two sequences (OP161921 and OP161926), however, to simplify the analysis we used only one of identical sequences (for Mes18s_1 – MK634544, for Mes18s_2 – OP161926). The number and type of ns indicate the presence of two haplogroups within the studied nucleotide sequences groups A (haplotypes Mes18S_1, Mes18S_3, Mes18S_4) and B (Mes18S_2, Mes18S_5). The presence of two haplogroups is a consequence of the high level of polymorphism in the nucleotide sequence of the 18S rRNA gene fragment in the general sample of Mesocestoides spp. In the haplogroup A, 8 polymorphic sites were identified (Fig. 2, Table 3). Mes18S_1 variant was predominant among the identified haplotypes, both within haplogroup A and in the general sample. It was found in samples from hosts belonging to different systematic groups (Clethrionomys rutilus, Craseomys rufocanus, Sorex caecutiens, S.isodon, S.tundrensis) with different levels of metabolism, and collected in geographically distant localities (Magadan region, Khabarovsk region and Yakutia) (Fig. 1, Table 1). Haplogroup B is represented by two haplotypes Mes18S_2 and Mes18S_5, differing from each other by two transversions. Haplotype Mes18S_2 was the second in the proportion of identified nucleotide sequences; it was found in specimens parasitizing C. rufocanus and S. caecutiens from Magadan region. Haplotype Mes18S_5 was found in a specimen from alaskan S. cinereus (Table 1). The total number of polymorphic sites in haplogroups A and B was 24. Taking into account all mutations in both haplogroups, haplogroup A differed from haplogroup B by 21 transitions and 6 transversions (Fig. 2). Nucleotide diversity (π) and the average number of pairwise differences between haplotypes (Pi) are higher in haplogroup A than in haplogroup B. At the same time, haplotype diversity (h) is higher in group B (Table 3). The genetic distance (pairwise Fst) between haplogroups A and B calculated by the pairwise differentiation method is 0.89583. The degree of genetic differences reliability (p Fst = 0.00901 ± 0.0091) is less than 0.05, which indicates the genetic isolation of the nucleotide sequences of these haplogroups. 95
Substitution share Molecular diversity indices N n/m k Sample share Haplotipe Haplogroup Transition Transversion π ± sd h ± sd Pi ± sd Mes18s_1 0.5833 Mes18s_2 0.1667 0.2500 3 2/2 2 0 1.00 0.0015 ± 0.0016 0.6667 ± 0.3143 1.3333 ± 1.0983 Mes18s_5 0.0833 0.7500 9 10/8 3 0.500 0.500 0.0023 ± 0.0016 0.4167 ± 0.1907 1.9722 ± 1.2272 Mes18s_3 0.0833 Mes18s_4 0.0833 B А Haplogroup Haplotipe General sample – 12 27/24 5 0.7779 0.2222 0.0095 ± 0.0053 0.6667 ± 0.1409 8.3333 ± 4.1537 Substitutions between haplogroups A and B – – 27/24 – 0.7779 0.2222 – – – Table 3. Characteristics of Mes18s_1–Mes18s_5 haplotypes of the 18S rRNA gene fragment of Mesocestoides sp. Notes. N – sample size, n – number of substitutions, m – number of polymorphic sites, k – number of haplotypes in the sample, π – nucleotide diversity, h – haplotype diversity, Pi – average number of pairwise differences between haplotypes, sd – standard deviation, “–” – data is not calculated. 96
Phylogenetic relationships among Mesocestoides Phylogenetic relationships within Mesocestoides spp. are presented in Fig. 3. Figure 3. ML–phylogenetic tree constructed based on data on the variability of the nucleotide sequence of the studied haplotypes of the 18S rRNA gene fragment of Mesocestoides sp. and data from GenBank. The nodes indicate bootstrap indices (≥ 50%). Five clades have been identified in the ML-phylogenetic tree of Mesocestoides spp. Clade I includes nucleotide sequences of the haplogroup A and EF095248 Mesocestoides sp. (Waeschenbach et al., 2007). Clade II contains the nucleotide sequences of M. corti: GU442130 (Piseddu et al., unpublished), AF286984 (Olson et al., 2001) and Mesocestoides sp. AF119678 (Crosbie et al., 2000). It can be assumed that the nucleotide sequences of the 18S rRNA gene fragment of the same Mesocestoides species representatives have a sufficiently similar structure to form subclades with statistically significant bootstrap indices on the branches of the ML phylogenetic tree. Therefore, it is possible, that AF119678 Mesocestoides sp. (Crosbie et al., 2000), which forms clade II together with AF286984 and GU442130, belongs to the species Mesocestoides corti. In addition, haplotype MK239661 (Heneberg et al., 2019) of Mesocestoides sp. has the same nucleotide sequence with GU442130, and AF119678 Mesocestoides sp. is identical to AF286984, AF119688-AF119690, which also allows us to classify these samples of Mesocestoides sp. as M. corti. Clade III is formed by the nucleotide sequences of M. melesi. The MN401346 variant is identical to MN401345 and MN512707 (Bayer et al., 2020). Haplotype MN401347 differs from these nucleotide sequences by four transitions and five transversions. Haplotypes of haplogroup B form clade IV with a bootstrap index of 100%. This indicates the genetic isolation of samples Mes18S_2 and Mes18S_5 from other nucleotide sequences. It should be emphasized that haplogroup B contains samples from remote habitats - from the vicinity of Magadan and Fairbanks (USA). 97