Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Обучение чтению литературы на английском языке по специальности «Композиционные материалы»

Покупка
Новинка
Артикул: 840508.01.99
Доступ онлайн
600 ₽
В корзину
В методических указаниях представлены оригинальные тексты на английском языке, необходимые для аудиторной и самостоятельной работы студентов, обучающихся по специальности «Композиционные материалы», а также упражнения на развитие навыков устной речи, чтения и понимания научно-технической литературы на английском языке, на закрепление грамматического и лексического материала. Для студентов старших курсов факультета «Специальное машиностроение» МГТУ им. Н.Э, Баумана. Рекомендовано Учебно-методической комиссией НУК ФН МГТУ им. Н.Э. Баумана.
Кузьмина, Л. А. Обучение чтению литературы на английском языке по специальности «Композиционные материалы» : методические указания / Л. А. Кузьмина, А. В. Шашмурина. - Москва : Изд-воМГТУ им. Баумана, 2012. - 36 с. - Текст : электронный. - URL: https://znanium.ru/catalog/product/2166537 (дата обращения: 08.09.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
Московский государственный технический университет  
имени Н.Э. Баумана 

Л.А. Кузьмина, А.В. Шашмурина 
 
 
ОБУЧЕНИЕ ЧТЕНИЮ ЛИТЕРАТУРЫ  
НА АНГЛИЙСКОМ ЯЗЫКЕ  
ПО СПЕЦИАЛЬНОСТИ  
«КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ» 
 
 
Методические указания 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

М о с к в а  

Издательство МГТУ им. Н.Э. Баумана 

2 0 1 2  

УДК 802.0 
ББК 81.2 Англ-923 
К89 
Рецензент И.В. Стасенко  

 
Кузьмина Л.А.  
  
 
        Обучение чтению литературы на английском языке по 
специальности 
«Композиционные 
материалы» 
: 
метод. 
указания / Л.А. Кузьмина, А.В. Шашмурина. — М.: Изд-во 
МГТУ им. Н.Э. Баумана, 2012. — 32, [4] с.  
  
В методических указаниях представлены оригинальные тексты 
на английском языке, необходимые для аудиторной и самостоятельной работы студентов, обучающихся по специальности «Композиционные материалы», а также упражнения на развитие навыков 
устной речи, чтения и понимания научно-технической литературы 
на английском языке, на закрепление грамматического и лексического материала.  
Для студентов старших курсов факультета «Специальное машиностроение» МГТУ им. Н.Э, Баумана. 
Рекомендовано Учебно-методической комиссией НУК ФН 
МГТУ им. Н.Э. Баумана. 
 
УДК 802.0 
ББК 81.2 Англ-923 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© МГТУ им. Н.Э. Баумана, 2012 

К89 

ПРЕДИСЛОВИЕ 

В методических указаниях представлены оригинальные 
тексты, взятые из английских научно-технических изданий, 
необходимые для аудиторной и самостоятельной работы 
студентов старших курсов, обучающихся по специальности 
«Композиционные материалы». 
Методические указания состоят из трех блоков, включающих тексты для изучающего, просмотрового и поискового чтения, активную лексику, упражнения, направленные 
на закрепление лексико-грамматического материала. Предложены также тексты для письменного перевода как с английского языка на русский, так и с русского языка на английский, требующие последующего обсуждения трудностей 
перевода. Помимо этого представлены коммуникационные 
задания по основным проблемам, затронутым в методических указаниях. 
Целью работы является помощь студентам в освоении и 
развитии навыков чтения, перевода и коммуникации по специальности «Композиционные материалы». 
  
 

UNIT I 

New Words and Word Combination 

align v — располагать по одной линии, выравнивать 
asset n — ценное, полезное свойство 
bend v — изгибать, гнуть 
binding power — связующая способность  
brittle adj — хрупкий 
bundle n — связка, пучок 
cure v — восстанавливать 
dissolve v — растворяться 
fracture toughness — вязкость разрушения, трещиностойкость 
irreversible adj — неизменяемый, необратимый 
mould n — форма, лекало, шаблон 
moulding process — процесс формовки 
pultrusion n — получение одноосноориентированного 
волокнистого пластика  
reinforcement n — усиление, упрочнение, армирование 
saturate v — пропитывать, насыщать 
share stress — распределять нагрузку 
snap v — разламывать 
stretch v — растягивать, вытягивать 
tailor properties — разрабатывать, проектировать свойства 
thermoplastic(s) — термопластмасса 
thermoset — реактопласт, термореактивная пластмасса 
thread n — нить 
timber n — древесина 
wear n — износ 

1. Find the transcription of the following words in a 
dictionary. Pronounce them carefully: 
pultrusion, irreversible, thermoplastics, brittle, fiberglass, 
tension, moulding.  
 
2. Translate the following words and word combinations: 
swimming pool linings, long fibres of cellulose, bundle of 
cotton 
fibres, 
reinforced 
concrete, 
tensile 
strength, 
thermosoftening plastics, bulletproof vests and helme. 
 
3. Read and translate Text IA. Choose the proper titles to 
the parts of the text.  
A. Making a composite. 
B. Not a new idea. 
C. Choosing materials for the matrix. 
D. Selecting the materials for the reinforcement. 
E. What makes a material a composite? 
F. Manufacturing process.  
G. What are the reasons for selecting composite materials? 

Text IA 

In an advanced society like ours we all depend on composite 
materials in some aspect of our lives. Fibreglass, developed in 
the1940s, was the first modern composite and is still the most 
common. It makes up about 65 percent of all the composites 
produced today and is used for boat hulls, surfboards, sporting 
goods, swimming pool linings, building panels and car bodies. 
You may well be using something made of fiberglass without 
knowing it. 

1 

Composite materials are formed by combining two or more 
materials that have quite different properties. The different 
materials work together to give the composite unique properties, 

but within the composite you can easily tell the different 
materials apart — they do not dissolve or blend into each other. 
Composites exist in nature. A piece of wood is a composite, 
with long fibres of cellulose (a very complex form of starch) held 
together by a much weaker substance called lignin. Cellulose is 
also found in cotton and linen, but it is the binding power of the 
lignin that makes a piece of timber much stronger than a bundle 
of cotton fibres. 

2 

Humans have been using composite materials for thousands 
of years. Take mud bricks for example. A cake of dried mud is 
easy to break by bending, which puts tension force on one edge, 
but makes good strong wall, where all the forces are compressive. 
A piece of straw, on the other hand, has a lot of strength when 
you try to stretch it but almost none when you crumple it up. But 
if you embed pieces of straw in a block of mud and let it dry hard, 
the resulting mud brick resists both squeezing and tearing and 
makes an excellent building material. Put more technically, it has 
both good compressive strength and good tensile strength. 
Another well-known composite is concrete. Here aggregate 
(small stones or gravel) is bound together by cement. Concrete 
has good strength under compression, and it can be made stronger 
under tension by adding metal rods, wires, mesh or cables to the 
composite (so creating reinforced concrete). 

3 

Most composites are made up of just two materials. One material 
(the matrix of binder) surrounds and binds together a cluster of 
fibres or fragments of a much stronger material (the reinforcement). 
In the case of mud bricks, the two roles are taken by the mud and the 
straw; in concrete, by the cement and the aggregate; in a piece of 
wood, by the cellulose and the lignin. In fiberglass, the 
reinforcement is provided by fine threads of fibres of glass, often 
woven into a sort of cloth, and the matrix is a plastic. 

The threads of glass in fiberglass are very strong under 
tension but they are also brittle and will snap if bent sharply. 
The matrix not only holds the fibres together, it also protects 
them from damage by sharing any stress among them. The 
matrix is soft enough to be shaped with tools, and can be 
softened by suitable solvents to allow repairs to be made. Any 
deformation of a sheet of fiberglass necessarily stretches some 
of the glass fibres, and they are able to resist this, so even a thin 
sheet is very strong. It is also quite light, which is an advantage 
in many applications. 
Over recent decades many new composites have been 
developed, some with very valuable properties. By carefully 
choosing the reinforcement, the matrix, and the manufacturing 
process that brings them together, engineers can tailor the 
properties to meet specific requirements . They can, for example, 
make the composite sheet very strong in one direction by aligning 
the fibres that way, but weaker in another direction where 
strength is not so important. They can also select properties such 
as resistance to heat, chemicals, and weathering by choosing an 
appropriate matrix. 
For the matrix, many modern composites use thermosetting or 
thermosoftening plastics (also called resins). (The use of plastics 
in the matrix explains the name “reinforced plastics” commonly 
given to composites.) The plastics are polymers that hold the 
reinforcement together and help to determine the physical 
properties of the end product. 
Thermosetting plastics are liquid when prepared but harden 
and become rigid (i. e. they cure) when they are heated. The 
setting process is irreversible, so that these materials do not 
become soft under high temperatures. These plastics also resist 
wear and attack by chemicals making them very durable, even 
when exposed to extreme environments. 
Thermosoftening plastics, as the name implies, are hard at low 
temperatures but soften when they are heated. Although they are 
less commonly used than thermosetting plastics they do have 

some advantages, such as greater fracture toughness, long shelf 
life of the row material, capacity for recycling and a cleaner, safer 
workplace because organic solvents are not needed for the 
hardening process. 
Ceramics, carbon and metals are used as the matrix for some 
highly specialized purposes. For example, ceramics are used 
when the material is going to be exposed to high temperatures 
(e. g. heat exchangers) and carbon is used for products that are 
exposed to friction and wear (e. g. bearings and gears). 

4 

Although glass fibres are by far the most common 
reinforcement, many advanced composites now use fine fibres of 
pure carbon. Carbon fibres are much stronger than glass fibres, 
but are also more expensive to produce. Carbon fibres composites 
are light as well as strong. They are used in aircraft structures and 
in sporting goods, and increasingly are used instead of metals to 
repair or replace damaged bones. Even stronger (and more costly) 
than carbon fibres are threads of boron. 
Polymers are not only used for the matrix, they also make a 
good reinforcement material in composites. For example, Kevlar 
is a polymer fibre that is immensely strong and adds toughness to 
a composite. It is used as the reinforcement in composite products 
that require lightweight and reliable construction (e. g. structural 
body parts of an aircraft). Composite materials were not the 
original use for Kevlar — it was developed to replace steel in 
radial tyres and is now used in bulletproof vests and helmets. 

5 

Making an object from a composite material usually involves 
some form of mould. The reinforcing material is first placed in 
the mould and semi-liquid matrix material is sprayed or pumped 
in to form the object. Pressure may be applied to force out any air 
bubbles, and the mould then heated to make the matrix.  

The moulding process is often done by hand, but automatic 
processing by machines is becoming more common. One of the 
new methods is called pultrusion (a term derived from words 
“pull” and “extrusion”). This process is ideal for manufacturing 
products that are straight and have a constant cross section, such 
as bridge beams. 
In many thin structures with complex shapes, such as curved 
panels, the composite structure is built up by applying sheets of 
woven fibre reinforcement, saturated with the plastic matrix 
material, over an appropriately shaped base mould. When the 
panel has been built to an appropriate thickness, the matrix panel 
is then cured. 
In many advanced composites (such as those used in the wing 
and body panels of aircraft), the structure may consist of a 
honeycomb of plastic sandwiched between two skins of carbonfibre reinforced composite material. Such sandwich composites 
combine high strength, and particularly bending stiffness, with low 
weight. Like everything to do with aircraft, they can very costly! 

6 

The greatest advantage of composite materials is strength and 
stiffness combined with lightness. By choosing an appropriate 
combination of reinforcement and matrix material, manufacturers 
can produce properties that exactly fit the requirements for a 
particular structure for a particular purpose. 
Modern aviation, both military and civil, is a prime example. 
It would be much less efficient without composites. In fact, the 
demands made by that industry for materials that are both light 
and strong has been the main force driving the development of 
composites. It is common now to find wing and tail sections, 
propellers and rotor blades made from advanced composites, 
along with much of the internal structure and fittings. The 
airframes of some smaller aircraft are made entirely from 
composites, as are the wing, tail and body panels of large 
commercial aircraft. 

7 

In thinking about planes, it is worth remembering that 
composites are less likely than metals (such as aluminium) to break 
up completely under stress. A small crack in a piece of metal can 
spread very rapidly with very serious consequences (especially in 
the case of aircraft). The fibres in a composite act to block the 
widening of any small crack and to share the stress around.  
The right composites also stand up well to heat and corrosion. 
This makes them ideal for use in products that are exposed to 
extreme 
environments 
such 
as 
boats, 
chemical-handling 
equipment and spacecraft. In general, composite materials are 
very durable. 
Another advantage of composite materials is that they provide 
design flexibility. Composites can be moulded into complex 
shapes — a great asset when producing something like a 
surfboard or a boat hull. 
The downside of composites is usually the cost. Although the 
manufacturing processes are often more efficient when 
composites are used, the raw materials are expensive. Composites 
will never totally replace traditional materials like steel, but in 
many cases they are just what we need. And no doubt new uses 
will be found as the technology evolves. We haven’t yet seen all 
that composites can do. 
 
4. Answer the questions to the text. 
1. What materials do we call “composites”? 2. What were the 
first composite materials used by humans? 3. What matrix 
(reinforcement) materials can you name? 4. Where can composite 
materials be used? 5. What are the advantages of composites? 
6. Name some valuable properties of composite materials. 
 

Доступ онлайн
600 ₽
В корзину