Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Обучение чтению и устной речи на английском языке по специальности «Физика»

Покупка
Новинка
Артикул: 840501.01.99
Доступ онлайн
800 ₽
В корзину
В каждом из трех уроков содержатся словарь, три текста и задания, позволяющие контролировать понимание текстов. Грамматические упражнения направлены на повторение наиболее сложных конструкций английского языка. Для студентов старших курсов, обучающихся по специальности «Физика» (кафедра ФН-4).
Дедушенко, И. С. Обучение чтению и устной речи на английском языке по специальности «Физика» : методические указания / И. С. Дедушенко. - Москва : Изд-во МГТУ им. Баумана, 2012. - 52 с. - Текст : электронный. - URL: https://znanium.ru/catalog/product/2166528 (дата обращения: 08.09.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
Московский государственный технический университет  
имени Н.Э. Баумана 

И.С. Дедушенко 
 
 
Обучение чтению  
и устной речи  
на английском языке  
по специальности  
«Физика» 
 
 
Методические указания 
 
 
 
 
 
 
 
 
 

Москва 

Издательство МГТУ им. Н.Э. Баумана 

2012 

УДК 802.0 
ББК 81.2 Англ-923 
Д26 
Рецензент И.В. Стасенко  

 
Дедушенко И.С.   
   
 
       Обучение чтению и устной речи на английском языке 
по специальности «Физика» : метод. указания / И.С. Дедушенко. — М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. — 
49, [3] с.  
  
В каждом из трех уроков содержатся словарь, три текста и задания, позволяющие контролировать понимание текстов. Грамматические упражнения направлены на повторение наиболее сложных 
конструкций английского языка.  
Для студентов старших курсов, обучающихся по специальности  
«Физика» (кафедра ФН-4). 
 
УДК 802.0 
ББК 81.2 Англ-923 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 МГТУ им. Н.Э. Баумана, 2012 

Д26 

ПРЕДИСЛОВИЕ 

Данные методические указания предназначены для обучения 
студентов-физиков старших курсов чтению, переводу научно-технической литературы на английском языке, навыкам реферирования и аннотирования, а также умению дискутировать на профессиональные темы.  
Перед чтением основного текста урока рекомендуется ознакомиться с предваряющим текст вокабуляром. Усвоение терминов 
облегчает дальнейшее беспереводное понимание текстов. Любая 
работа с текстом должна начинаться с просмотрового чтения, а не 
с дословного перевода. 
В разделе Discussion даны задания на понимание текста и применение материалов урока при обсуждении проблем по физике. 
Этот раздел очень важен для обучения студентов навыкам устной 
речи, умению анализировать материал и логически строить ответ. 
Эти навыки и умения позволят студенту подготовиться к презентации доклада на конференции, а также с легкостью вести беседу 
на профессиональную тему и обсуждать научные проблемы. 
Грамматические упражнения составлены таким образом, что 
обеспечивают повторение наиболее сложных конструкций английского языка, таких, как образование множественного числа 
существительных латинского и греческого происхождения, неличные формы глагола. Предложенный грамматический материал  
необходим для правильного перевода статей по физике, а также 
для ведения научной беседы. 
Методические указания помогут будущим специалистам в области физики лучше ориентироваться в огромном потоке публикаций на английском языке, определять их ценность и постоянно повышать свой профессиональный уровень. 
 

Unit 1. THREE NEWTON’S LAWS 

Memorize the following vocabulary to text 1A. 
center-of-mass acceleration — центр инерционной массы 
conversion n — превращение, преобразование, переход 
converse v — преобразовывать 
exert v — прилагать усилия, напрягать силы 
downward force — сила, направленная вниз 
total force — результирующая (полная, суммарная) сила  
upward force — подъемная сила; сила, направленная вверх 
let down v — опускать, спускать; ослаблять, замедлять, 
снижать  
negligible adj — ничтожный, не принимаемый в расчет 
on the order of — порядка … 
pull up v — натягивать 
side-effect — побочный эффект 
speed up v — ускорять 
stick, stuck v — задерживать, останавливать 
streamlined adj — обтекаемый, четкий 
taper off v — сужаться, убывать по конусу 
terminal velocity — конечная скорость 
vanquish v — преодолевать, побеждать 
velocity n — 1. скорость; 2. вектор скорости 
weigh v — взвешивать 
weight n — вес 
 

Text 1A. Newton’s First Law 

Read and translate the text. Study the examples given in the 
text.  
If the total force on an object is zero, its center of mass 
continues in the same state of motion. 
In other words, an object initially at rest is predicted to remain 
at rest if the total force on it is zero, and an object in motion 
remains in motion with the same velocity in the same direction. 
The converse of Newton’s first law is also true: if we observe an 
object moving with constant velocity along a straight line, then 
the total force on it must be zero. 
What happens if the total force on an object is not zero? It 
accelerates.  
For example: An elevator has a weight of 5000 N. Compare 
the forces that the cable must exert to raise it at constant velocity, 
lower it at constant velocity, and just keep it hanging. 
Answer: In all three cases the cable must pull up with a force of 
exactly 5000 N. Most people think you’d need at least a little more 
than 5000 N to make it go up, and a little less than 5000 N to let it 
down, but that’s incorrect. Extra force from the cable is only 
necessary for speeding the car up when it starts going up or 
slowing it down when it finishes going down. Decreased force is 
needed to speed the car up when it gets going down and to slow it 
down when it finishes going up. But when the elevator is cruising 
at constant velocity, Newton’s first law says that you just need to 
cancel the force of the earth’s gravity. It seems that the statement 
in the example that the cable’s upward force “cancels” the earth’s 
downward gravitational force implies that there has been a contest, 
and the cable’s force has won, vanquishing the earth’s gravitational 
force and making it disappear. We know that both forces continue 
to exist because they both have side-effects other than their effects 
on the car’s centre-of-mass motion. That is incorrect. Both forces 
continue to exist, but because they add up numerically to zero, the 
elevator has no center-of-mass acceleration. The force acting 

between the cable and the car continues to produce tension in the 
cable and keep the cable taut. The earth's gravitational force 
continues to keep the passengers (whom we are considering as part 
of the elevator-object) stuck to the floor and to produce internal 
stresses in the walls of the car, which must hold up the floor. 
Example 2 (terminal velocity for falling objects): An object 
like a feather that is not dense or streamlined does not fall with 
constant acceleration, because air resistance is nonnegligible. In 
fact, its acceleration tapers off to nearly zero within a fraction of 
a second, and the feather finishes dropping at constant speed 
(known as its terminal velocity). Why does this happen? 
Newton’s first law tells us that the total force on the feather 
must have been reduced to nearly zero after a short time. There 
are two forces acting on the feather: a downward gravitational 
force from the planet earth, and an upward frictional force from 
the air. As the feather speeds up, the air friction becomes stronger 
and stronger, and eventually it cancels out the earth’s 
gravitational force, so the feather just continues with constant 
velocity without speeding up any more. 
The situation for a skydiver is exactly analogous. It’s just that 
the skydiver experiences perhaps a million times more 
gravitational force than the feather, and it is not until she is falling 
very fast that the force of air friction becomes as strong as the 
gravitational force. It takes her several seconds to reach terminal 
velocity, which is on the order of a hundred miles per hour.  
(2885) 

Tasks to text 1A 

1. Give the definition of the First Newton’s Law. 
2. What forces act on a falling object? 
3. What fields of physics can the First Newton’s Law be 
applied to? 
4. Give your own examples of the First Newton’s Law 
application. 

Text 1B. Newton’s Second Law 

Read the text and state what acceleration is. 
What about cases where the total force on an object is not 
zero, so that Newton’s first law doesn’t apply? The object will 
have acceleration. The way positive and negative signs of force 
and acceleration are defined guarantees that positive forces 
produce positive accelerations, and likewise for negative values. 
How much acceleration will it have? It will clearly depend on 
both the object’s mass and on the amount of force. 
Experiments with any particular object show that its acceleration 
is directly proportional to the total force applied to it. This may seem 
wrong, since we know of many cases where small amounts of force 
fail to move an object at all, and larger forces get it going. 
This apparent failure of proportionality actually results from 
forgetting that there is a frictional force in addition to the force 
we apply to move the object. The object’s acceleration is exactly 
proportional to the total force on it, not to any individual force on 
it. In the absence of friction, even a very tiny force can slowly 
change the velocity of a very massive object. Experiments also 
show that the acceleration is inversely proportional to the object’s 
mass, and combining these two proportionalities gives the 
following way of predicting the acceleration of any object: 

Newton’s second law: a = Ftotal / m, 

where m is an object’s mass, Ftotal is the sum of the forces acting 
on it, and a is the acceleration of the object’s center of mass. The 
case is presently restricted to where the forces of interest are 
parallel to the direction of motion. 
For example: A bus with a mass of 2000 kg accelerates from 
0 to 25 m/s (freeway speed) in 34 s. Assuming the acceleration is 
constant, what is the total force on the bus? 
We solve Newton’s second law for Ftotal = ma, and substitute 
a = v/t for a, giving  
Ftotal = mv/t = (2000 kg)(25 m/s – 0 m/s)/(34 s) = 1.5 kN. 

As with the first law, the second law can be easily generalized 
to include a much larger class of interesting situations: suppose an 
object is being acted on by two sets of forces, one set lying along 
the object’s initial direction of motion and another set acting along 
a perpendicular line. If the forces perpendicular to the initial 
direction of motion cancel out, then the object accelerates along its 
original line of motion according to a = Ftotal / m.  
(1916)  

Text 1C. Newton’s Third Law 

Read, translate the text and answer the question: Was 
Newton’s Third Law ever violated? 
Newton created the modern concept of force starting from his 
insight that all the effects that govern motion are interactions 
between two objects: unlike the Aristotelian theory, Newtonian 
physics has no phenomena in which an object changes its own 
motion. Is one object always the “order-giver” and the other the 
“order-follower”? 
As an example, consider a batter hitting a baseball. The bat 
definitely exerts a large force on the ball, because the ball 
accelerates drastically. But it is known that the ball also makes a 
force on the bat.  
How does the ball’s force on the bat compare with the bat’s 
force on the ball? The bat’s acceleration is not as spectacular as 
the ball’s, since the bat’s mass is much greater. In fact, careful 
measurements of both objects’ masses and accelerations would 
show that mballaball is very nearly equal to mbatabat, which 
suggests that the ball’s force on the bat is of the same magnitude 
as the bat’s force on the ball, but in the opposite direction.  
Let’s discuss two examples:  
a) Two magnets exert forces on each other; 
b) Two people’s hands exert forces on each other. 
In the first experiment, a large magnet and a small magnet are 
weighed separately, and then one magnet is hung from the pan of 

the top balance so that it is directly above the other magnet. There 
is an attraction between the two magnets, causing the reading on 
the top scale to increase and the reading on the bottom scale to 
decrease. The large magnet is more “powerful” in the sense that it 
can pick up a heavier paperclip from the same distance, so many 
people have a strong expectation that one scale’s reading will 
change by a far different amount than the other. Instead, the two 
changes are found to be equal in magnitude but opposite in 
direction: the force of the bottom magnet pulling down on the top 
one has the same strength as the force of the top one pulling up 
on the bottom one. 
In the second experiment, two people pull on two spring 
scales. Regardless of who tries to pull harder, the two forces as 
measured on the spring scales are equal. Interposing the two 
spring scales is necessary in order to measure the forces, but the 
outcome is not some artificial result of the scales’ interactions 
with each other. If one person slaps another hard on the hand, the 
slapper’s hand hurts just as much as the slappee’s, and it doesn’t 
matter if the recipient of the slap tries to be inactive. (Punching 
someone in the mouth causes just as much force on the fist as on 
the lips. It’s just that the lips are more delicate. The forces are 
equal, but not the levels of pain and injury.) 
Newton, after observing a series of results such as these, 
decided that there must be a fundamental law of nature at work: 
Newton’s third law: Forces occur in equal and opposite 
pairs: whenever object A exerts a force on object B, object B 
must also be exerting a force on object A. The two forces are 
equal in magnitude and opposite in direction. 
In one-dimensional situations, we can use plus and minus 
signs to indicate the directions of forces, and Newton’s third law 
can be written succinctly as FA on B = –FB on A. 
There is no cause and effect relationship between the two 
forces. There is no “original” force, and neither one is a response 
to the other. The pair of forces is a relationship. Newton came up 
with the third law as a generalization about all the types of forces 

with which he was familiar, such as frictional and gravitational 
forces. When later physicists discovered a new type force, such as 
the force that holds atomic nuclei together, they had to check 
whether it obeyed Newton’s third law. So far, no violation of the 
third law has ever been discovered, whereas the first and second 
laws were shown to have limitations by Einstein and the pioneers 
of atomic physics. 
Newton’s third law does not mean that forces always cancel 
out so that nothing can ever move. If the two figure skaters, 
initially at rest, push against each other, they will both move. 
It often sounds as though Newton’s third law implies nothing 
could ever change its motion, since the two equal and opposite 
forces would always cancel. The two forces, however, are always 
on two different objects, so it doesn’t make sense to add them in 
the first place — we only add forces that are acting on the same 
object. If two objects are interacting via a force and no other 
forces are involved, then both objects will accelerate — in 
opposite directions! 
It doesn’t make sense to refer to the equal and opposite forces 
of Newton’s third law as canceling. It only makes sense to add up 
forces that are acting on the same object, whereas two forces 
related to each other by Newton’s third law are always acting on 
two different objects. 
Newton’s third law is completely symmetric in the sense that 
neither force constitutes a delayed response to the other. 
Newton’s third law does not even mention time, and the forces 
are supposed to agree at any given instant. This creates an 
interesting situation when it comes to non contact forces. Suppose 
two people are holding magnets, and when one person waves or 
wiggles her magnet, the other person feels an effect on his. In this 
way they can send signals to each other from opposite sides of a 
wall, and if Newton’s third law is correct, it would seem that the 
signals are transmitted instantly, with no time lag. The signals are 
indeed transmitted quite quickly, but experiments with 
electronically controlled magnets show that the signals do not 

Доступ онлайн
800 ₽
В корзину