Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Обучение чтению литературы на английском языке по специальности «Системы автоматического управления»

Покупка
Новинка
Артикул: 840468.01.99
Доступ онлайн
600 ₽
В корзину
Цель учебного пособия — совершенствование навыков различных видов чтения, навыков монологического высказывания и ведения беседы по специальности на английском языке. Издание содержит единый принцип подачи материалов: основной текст для самостоятельного чтения, дополнительные тексты для чтения в аудитории и дополнительные тексты с тематикой по специальности, изучаемой студентами на лекциях. Включены неадаптированные тексты из англоязычной научно-технической литературы. Для студентов старших курсов технических специальностей.
Курчаткина, Г. П. Обучение чтению литературы на английском языке по специальности «Системы автоматического управления» : учебное пособие / Г. П. Курчаткина, С. Б. Стручкова. - Москва : Издательство МГТУ им. Баумана, 2014. - 40 с. - ISBN 978-5-7038-4025-2. - Текст : электронный. - URL: https://znanium.ru/catalog/product/2166485 (дата обращения: 08.09.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
Московский государственный технический университет 
имени Н.Э. Баумана 

Г.П. Курчаткина, С.Б. Стручкова 

Обучение чтению литературы на английском 
языке по специальности 
«Системы автоматического управления» 
 
 
Учебное пособие 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

УДК 811:681.5 
ББК 81.2 Англ 
 
К93 
 
Издание доступно в электронном виде на портале ebooks.bmstu.ru 
по адресу http://ebooks.bmstu.ru/catalog/238/book632.html 
 
Факультет «Лингвистика» 
Кафедра «Английский язык для приборостроительных специальностей» 
 
 
Рекомендовано  
Учебно-методической комиссией Научно-учебного комплекса 
«Фундаментальные науки» МГТУ им. Н.Э. Баумана 
в качестве учебного пособия 
 
Рецензент  
канд. филол. наук, доцент С.Ю. Бабанова 

 
Курчаткина, Г. П. 
К93 
 
Обучение чтению литературы на английском языке по специальности «Системы автоматического управления» : учебное 
пособие / Г. П. Курчаткина, С. Б. Стручкова. — Москва : 
Издательство МГТУ им. Н. Э. Баумана, 2014. — 36, [4] с. : ил.   
     ISBN 978-5-7038-4025-2 

 
Цель учебного пособия — совершенствование навыков различных 
видов чтения, навыков монологического высказывания и ведения беседы по специальности на английском языке. Издание содержит единый принцип подачи материалов: основной текст для самостоятельного 
чтения, дополнительные тексты для чтения в аудитории и дополнительные тексты с тематикой по специальности, изучаемой студентами 
на лекциях. Включены неадаптированные тексты из англоязычной научно-технической литературы.  
Для студентов старших курсов технических специальностей. 

 
 
  УДК 811:681.5 
 
ББК 81.2 Англ 
 
 

 
 МГТУ им. Н.Э. Баумана, 2014 
 
 Оформление. Издательство  
ISBN 978-5-7038-4025-2  
    МГТУ им. Н.Э. Баумана, 2014 
 

 

ПРЕДИСЛОВИЕ 
 
Предлагаемое учебное пособие предназначено для студентов 
старших курсов МГТУ им. Н.Э. Баумана, изучающих системы 
автоматического управления.  
Издание содержит три модуля (units 1−3), в которые входят 
основной текст для самостоятельной работы студентов, предполагающий изучающее чтение (А), и дополнительные тексты (B, C, 
D), предназначенные для ознакомительного и просмотрового 
чтения, а также предтекстовые и послетекстовые упражнения. 
В конце текста в скобках указан его объем (количество знаков). 
Одной из основных целей данного учебного пособия является 
совершенствование студентами умения чтения с общим охватом 
содержания и чтения с элементами анализа оригинальной научнотехнической литературы. Поэтому любая работа с текстом 
начинается с просмотрового чтения, что позволяет воспринимать 
текст как единое целое. Задания по составлению собственного 
плана изложения позволяют критически оценивать и переосмысливать прочитанное, перегруппировывать полученную информацию, что является совершенно необходимым для написания 
аннотаций и рефератов. 
Авторы сознательно не составляли активный словарь к каждому тексту, поскольку вместе с заданиями отсутствие вынесенной лексики способствует активной работе обучающихся со 
справочными материалами. Это дает им возможность расширить 
и углубить знания по изучаемой специальности. 
В конце издания помещены упражнения на повторение грамматических конструкций, а также список латинских слов и сокращений, наиболее часто используемых в научно-технической литературе, и глоссарий. 
Учебное пособие поможет будущим специалистам лучше 
ориентироваться в потоке публикаций на английском языке, 
использовать информацию применительно к собственной сфере 
деятельности, таким образом расширяя кругозор и повышая свой 
профессиональный уровень. 
 

Unit 1 
 
Task 1. Skim text A and speak about its main points. 

Task 2. Find the following word combinations in the text and 
give their Russian equivalents: 
for the benefit of humankind; control system engineers; to provide 
useful economic products; the twin goals of understanding and control; an 
arrangement of components; specified inputs; an engineering system; the 
internal workings of the component elements; a mechanical, pneumatic, 
hydraulic, electrical or electronic system; the overall picture; actual 
position; desired position; making adjustments; by switching the heater on 
or off; to express the physical system in terms of a model.  

Task 3. Read and translate text A using a dictionary. Choose, 
underline and write out words and word combinations which are 
essential for your specialty. Remember them. 
 
Text A 
Systems 

Engineering is concerned with understanding and controlling the 
materials and forces of nature for the benefit of humankind. Control 
system engineers are concerned with understanding and controlling 
segments of their environment, often called systems, in order to 
provide useful economic products for society. The twin goals of 
understanding and control are complementary because, in order to be 
controlled more effectively, the systems under control must be 
understood and modelled. A system can be defined as an arrangement 
of components within some boundary which work together to provide 
some form of output from a specified input or inputs (Fig. 1.1).  
The boundary divides the system from the environment and the 
system interacts with the environment by means of signals crossing 
the boundary from the environment to the system, i.e. inputs, and 
signals crossing the boundary from the system to the environment, 
i.e. outputs. 
With an engineering system an engineer is more interested in the 
inputs and outputs of a system than the internal workings of the 
component elements of that system. By considering devices as systems we 

can concentrate on what they do rather than their internal workings. Thus 
if we know the relationship between the output and the input of a system, 
we can work out how it will behave whether it is a mechanical, pneumatic, 
hydraulic, electrical or electronic system. We can see the overall picture 
without becoming bogged down by internal detail.  

Environment

System

Inputs
System boundary

Outputs

 

Fig. 1.1. The system structure  

Control systems are systems that are used to maintain a desired 
result or value (Fig. 1.2).  

Inhut
Output
Control
system
The
required
value of a
variable

The variable
at the desired
value

 

Fig. 1.2. Control system 

For example, driving a car along a road involves the brain of the 
driver as a controller comparing the actual position of the car on the road 
with the desired position and making adjustments to correct any error 
between the desired and actual position. A room thermostat is another 
example of a controller, it controlling the heating system to give the 
required room temperature by switching the heater on or off to reduce the 
error between the actual temperature and the required temperature.  
With a systems approach to control we express the physical system 
in terms of a model, with the various physical components described as 
system blocks and with inputs and outputs and the relationship 
between the inputs and outputs expressed by means of a mathematical 
equation. 
(1960) 

Task 4. Give definitions to: system, control system, inputs, 
outputs. 

Task 5. Match a verb in column A with a noun in column B. 
Make up sentences with the resulting word combinations using the 
information learnt from the text. 
     A                                         B 
to maintain                           an error 
to make                                a system 
to correct                              an adjustment 
to reduce                               the difference 
to model                               a value 

Task 6. Answer the questions. 
1. What is engineering concerned with? 
2. What are control system engineers engaged in? 
3. Why are the twin goals of understanding and control 
complementary? 
4. What is a system? 
5. How does the system interact with the environment? 
6. What is an engineer interested in in the case of an engineering 
system? Why? 
7. What is the purpose of a control system? 
8. How is the physical system expressed with a system approach to 
control? 

Task 7. Speak about control systems using Figs. 1.1, 1.2. 

Task 8. Read text B and speak about its main points.  

Task 9. Read  text B with a dictionary to know its content in 
detail and complete the tasks that follow this text.  
 

Text B 
Block Diagrams 
 
A useful way of representing a system is as a block diagram: 
within the boundary described by the box outline is the system and 
inputs to the system are shown by arrows entering the box and outputs 
by arrows leaving the box. Fig. 1.3, a illustrates this for an electric 

motor system; there is an input of electrical energy and an output of 
mechanical energy in the form of the rotation of the motor shaft.  
 

Input
Output
Electric
motor
Electrical
energy
Mechanical
energy
a

Required
position
on road

Position of
steerinq
wheel

Actual
position
on road

The
driver
Steerinq
unit

b
 

Fig. 1.3.  Examples of block diagrams to represent systems:  
a − electric motor system; b − actual position as seen by driver 

While we can represent a control system as a single block with an 
input and an output, it is generally more useful to consider the system 
as a series of interconnected system elements, with each system 
element being represented by a block having a particular function. 
Thus, in the case of the driver of a car steering the car along a road we 
can consider the overall control system to have the elements of electric 
motor system, the driver with an input of the actual position he/she 
sees of the car on the road and also his/her thoughts on where the car 
should be in relation to the road giving an output of the hands turning 
the steering wheel; the car steering unit with the input of the steering 
wheel position and the output of the front wheel positions and hence 
the positioning of the car on the road. Fig. 1.3, b shows how these 
elements might be represented. 
In drawing formal block diagram models a number of conventions 
to represent the elements and connections are used: system element, 
information flows, summing junction and take-off point (Fig. 1.4). 
System element  is shown as a box with an input shown as an inward 
directed arrow and an output as an outward directed arrow (Fig. 1.4, a). 

Input
Output

a

A                  B

b

+
V1 + V2

V1
   +       V2

V1 + V2

V1 –       
          V2

+

c

V                        V

V

d
 

Fig. 1.4. Block diagram elements: 
a − system element;  b − information flows; c − summing junction; d − take-off point 
 
Information flows. A control system will be made up of a number 
of interconnected systems and we can draw a model of such a system 
as a series of interconnected blocks. Thus we can have one box giving 
an output which then becomes the input for another box (Fig. 1.4, b). 
We draw a line to connect the boxes and indicate a flow of information 
in the direction indicated by the arrow; the line does not necessarily 
represent a physical connection or the form of a physical connection.  
Summing junction. We often have situations with control systems 
where two signals are perhaps added together or one subtracted from 
another and the result of such operations then fed on to some system 
element. This is represented by a circle with the inputs to quadrants of 
the circle given «plus» or «minus» signs to indicate whether we are 
summing two positive quantities or summing a positive quantity and a 
negative quantity and so subtracting signals (Fig. 1.4, c). 
Take-off point. In the case of the car driving system (Fig. 1.3, b), 
the overall output is the actual position of the car on the road. But this 
signal is also tapped off to become an input to the car driver so that he 
or she can compare the actual position with the required position to 

adjust the steering wheel accordingly. As another illustration, in the 
case of a central heating system the overall output is the temperature of 
a room. But this temperature signal is also tapped off to become an 
input to the thermostat system where it is compared with the required 
temperature signal. Such a 'tapping-off' point in the system is 
represented as shown in Fig. 1.4, d.  
(2582) 

Task 10. Label the elements of a block diagram in Fig. 1.4. 

Task 11. Make up a plan for this text in the form of questions. 
Discuss the questions with the others in your group. 

Task 12. Summarize the text according to this plan. 

Task 13. Render the text given below into English.  

Систему управления можно разбить на блоки, имеющие вход и 
выход. Для того, чтобы показать взаимосвязи этих блоков, используют структурные схемы. На них каждый элемент изображается в 
виде прямоугольника, внутри которого записывается его передаточная функция. Вход и выход блока показывают соответственно 
«входящей» и «выходящей» стрелками. Для суммирующих элементов используют специальное обозначение – круг, разбитый на 
сектора. 
(374) 

Task 14. Skim text C and say what it deals with. 

Task 15. Read  text C with a dictionary to know its content in 
detail and complete the tasks that follow. 
 
Text C 
Control Systems Models 

There are two basic forms of control systems, one being called 
open-loop and the other closed-loop.  In an open-loop control system 
the output from the system has no effect on the input signal to the plant 
or process. The output is determined solely by the initial setting. Openloop systems have the advantage of being relatively simple and 
consequently cheap with generally good reliability. However, they are 
often inaccurate since there is no correction for errors in the output 
which might result from extraneous disturbances. 

Open-loop control is often used with processes that require the 
sequencing of events by on-off signals, e.g. washing machines which 
require the water to be switched on and then, after a suitable time, 
switched off followed by   the heater being switched on and then, after 
a suitable time, switched off. 
In a closed-loop control system a signal indicating the state of the 
output of the system is fed back to the input where it is compared with 
what was required and the difference is used to modify the output of 
the system so that it maintains the output at the required value. The 
term closed-loop refers to the loop created by the feedback path. 
Closed-loop systems have the advantage of being relatively accurate in 
matching the actual position to the required values. They are, however, 
more complex and so more costly with a greater chance of breakdown 
as a consequence of the greater number of components. 
The difference between the open- and closed-loop systems can be 
illustrated by the following example. Consider the heating of a room 
to some required temperature using an electric fire with a selection 
switch which allows a 1 kW or a 2 kW heating element to be 
selected. The decision might be made, as a result of experience, that 
to obtain the required temperature it is only necessary to switch on 
the 1 kW element. The room will heat up and reach a temperature 
which is determined by the fact the 1 kW element is switched on. The 
temperature of the room is thus controlled by an initial decision and 
no further adjustments are made.  If there are changes in the 
conditions, perhaps someone opening a window, there is no way the 
heat output can be adjusted to compensate. This is an example of 
open-loop control in that there is no information fed back to the 
element to adjust it and to maintain a constant temperature. The 
heating system with the electric fire could be made a closed-loop 
system if the person has a thermometer and switches the 1 kW and 2 
kW elements on or off to maintain the temperature of the room 
constant. In this situation there is feedback, the input to the system 
being adjusted according to whether its output is the required 
temperature. Thus if a window is opened and there is a sudden cold 
blast of air, the feedback signal changes because the room 
temperature changes and is fed back to modify the input to the 
system. The input to the heating process depends on the deviation of 
the actual temperature fed back from the output of the system from 
the required temperature initially set. The   difference between the 


Доступ онлайн
600 ₽
В корзину