Компьютерное моделирование
Покупка
Тематика:
Программирование и алгоритмизация
Издательство:
ИНТУИТ
Год издания: 2016
Кол-во страниц: 378
Дополнительно
В курсе излагаются элементы теории и практики компьютерного моделирования. Раскрываются основные понятия, приводятся аналитические модели процессов.
Значительная часть курса посвящена имитационному статистическому моделированию. Рассматриваются инструментальные средства системы моделирования GPSS World и методы их использования в широком наборе практических примеров.
Тематика:
ББК:
УДК:
ОКСО:
- 00.00.00: ОБЩИЕ ДИСЦИПЛИНЫ ДЛЯ ВСЕХ СПЕЦИАЛЬНОСТЕЙ
- ВО - Бакалавриат
- 01.03.02: Прикладная математика и информатика
- 09.03.01: Информатика и вычислительная техника
- 09.03.02: Информационные системы и технологии
- 09.03.03: Прикладная информатика
- 09.03.04: Программная инженерия
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
Компьютерное моделирование 2-е издание, исправленное Боев В.Д. Сыпченко Р.П. Национальный Открытый Университет “ИНТУИТ” 2016 2
Компьютерное моделирование/ В.Д. Боев , Р.П. Сыпченко - М.: Национальный Открытый Университет “ИНТУИТ”, 2016 В курсе излагаются элементы теории и практики компьютерного моделирования. Раскрываются основные понятия, приводятся аналитические модели процессов. Значительная часть курса посвящена имитационному статистическому моделированию. Рассматриваются инструментальные средства системы моделирования GPSS World и методы их использования в широком наборе практических примеров. (c) ООО “ИНТУИТ.РУ”, 2010-2016 (c) Боев В.Д., Сыпченко Р.П., 2010-2016 3
Введение Имитационное моделирование как необходимая часть инженерного образования сложилось в середине прошлого, двадцатого века. Воспринятое поначалу как своеобразный численный метод решения сложных задач, как “младший брат” аналитического моделирования, оно постепенно стало основным, подчас единственным методом при анализе и синтезе сложных систем и процессов. Общеизвестно, что правильно поставленный натурный эксперимент, то есть исследование свойств объекта на самом объекте, максимально информативен. Оказывается, что эксперимент с компьютерной имитационной моделью вполне конкурентоспособен с натурным. Не говоря о том, что натурный эксперимент в ряде случаев вообще невозможен или нецелесообразен, эксперимент с имитационной моделью может быть приемлемо информативен и выполнен значительно быстрее и дешевле натурного. Это и предопределило стремительное и повсеместное внедрение имитационного моделирования в научный и инженерный обиход. В популяризации имитационного моделирования заметную роль сыграли работы Р. Шеннона [45] и Т. Д. Шрайбера [46]. В свое время эти работы были широко известны в среде научных работников и инженеров. Большую положительную роль в распространении компьютерного имитационного моделирования у нас в стране сыграли работы по моделированию сложных систем на ЭВМ члена-корреспондента АН СССР Н. П. Бусленко и выдающегося математика академика АН СССР А. А. Самарского. Их работы в области математического моделирования и вычислительного эксперимента широко используются на практике. Огромный мировой опыт применения имитационного моделирования вызвал необходимость теоретического осмысления этого метода познания. Образовались центры в Москве, Санкт-Петербурге, Казани и др., объединяющие инженеров, научных сотрудников и преподавателей высшей школы, применяющих и пропагандирующих как само имитационное моделирование, так те или иные инструментальные средства. Регулярно проводятся общероссийские научно-практические конференции [27, 28]. Все чаще стали появляться публикации, посвященные общей теории имитационного моделирования. В частности, к таким можно отнести работы Окольнишникова В. В. [40] и Н. Б. Кобелева [31]. Курс имитационного моделирования под разными названиями: “Компьютерное моделирование”, “Моделирование систем”, “Моделирование” и т. п. является обязательным в учебных планах технических ВУЗов, в том числе и военных. Соответствующие знания включены в квалификационные характеристики выпускников. Настоящий курс представляет собой учебное пособие для изучения материала по этим дисциплинам. Содержание курса определено типовыми программами соответствующих специальностей и изложено в восьми лекциях. Первая лекция носит вводный характер. Разъясняются понятия моделирования и основных терминов. Классификация моделей и моделирования дается в самом общем 4
виде. Подробная классификация не актуальна для настоящего пособия, главной целью которого является обучение практическим приемам имитационного моделирования и проведению компьютерных экспериментов с моделью. Заметим, что и общепринятой универсальной классификации нет, да и вряд ли она целесообразна. Этапы моделирования также рассматриваются в виде общего представления. Углубленное раскрытие содержания этапов демонстрируется в ходе курсового проектирования, предусмотренного тематическими планами вышеназванных дисциплин. Во второй лекции рассматриваются подходы к аналитическому моделированию дискретных процессов, обладающих свойством марковости. Как показывает практика, такие процессы присущи многим аспектам функционального и надежностного поведения систем - объектов профессионального предназначения выпускников учебных заведений соответствующих специальностей. Демонстрируемые в лекции аналитические модели противоборства, массового обслуживания и некоторые другие утилитарного значения не имеют; на этих примерах демонстрируются возможные подходы к построению аналитических моделей процессов в объектах разного назначения. Заметим, что для сравнительно несложных процессов, например, для ряда структур систем массового обслуживания, аналитические модели можно обнаружить в соответствующих справочниках. В основной части курса (лекции 3…8) излагаются обоснования и приемы имитационного моделирования дискретных процессов - моделирования поведения вероятностных систем, т. е. таких, на которые воздействуют различного рода случайности. Такие модели называются статистическими, поскольку искомые результаты получают посредством статистической обработки данных. В качестве основного инструментального средства в курсе рассматривается система моделирования GPSS World. Эта система распространена в нашей стране и не только; ей посвящены представительные научно-практические конференции и издания. Авторы имеют опыт применения и преподавания всех вариаций семейства GPSS, начиная с самой первой. И если версии GPSS-360, GPSS/PC, GPSS/H можно упрекнуть в некоторой ограниченности средств по сравнению, например, с Simpas, то последнюю на сегодняшний день версию GPSS World можно, по мнению инженерной общественности и авторов, считать вполне удовлетворяющей современным требованиям практиков. В учебном пособии нельзя, да и нецелесообразно отобразить все возможности GPSS World. Для дальнейшего профессионального совершенствования следует обратиться к [5]. При работе над курсом авторы опирались на свой опыт моделирования и преподавания, а также на многие издания по теме. В наибольшей степени были учтены работы, указанные в списке литературы. Авторы признательны Д. В. Боеву, помощь которого в подготовке и оформлении рукописи была существенна. 5
Понятие модели и моделирования Первая тема имеет вводный, в основном, терминологический характер. Подробно раскрываются понятия модели и моделирования, их назначение как основного, а подчас, и единственного метода анализа и синтеза сложных систем и процессов. Дается обзор классификации моделей и моделирования, в некоторой мере упрощенный, но достаточный для полного уяснения сущности моделирования как вообще, так и математического в частности. Сам по себе процесс моделирования в полной мере не формализован, большая роль в этом принадлежит опыту инженера. Но, тем не менее, рассматриваемый в теме процесс создания модели в виде шести этапов может стать основой для начинающих и с накоплением опыта может быть индивидуализирован. Математическая модель, являясь абстрактным образом моделируемого объекта или процесса, не может быть его полным аналогом. Достаточно сходства в тех элементах, которые определяют цель исследования. Для качественной оценки сходства вводится понятие адекватности модели объекту и, в связи с этим, раскрываются понятия изоморфизма и изофункционализма. Формальных приемов, позволяющих автоматически, “бездумно”, создавать адекватные математические модели, нет. Окончательное суждение об адекватности модели дает практика, то есть сопоставление модели с действующим объектом. И, тем не менее, усвоение всех последующих тем пособия позволит инженеру справляться с проблемой обеспечения адекватности моделей. Завершается тема изложением требований к моделям, которые были сформулированы Р. Шенноном на заре компьютерного моделирования тридцать лет назад в книге “Имитационное моделирование систем - искусство и наука”. Актуальность этих требований сохраняется и в настоящее время. 1.1. Общее определение модели Практика свидетельствует: самое лучшее средство для определения свойств объекта натурный эксперимент, т. е. исследование свойств и поведения самого объекта в нужных условиях. Дело в том, что при проектировании невозможно учесть многие факторы, расчет ведется по усредненным справочным данным, используются новые, недостаточно проверенные элементы (прогресс нетерпелив!), меняются условия внешней среды и многое другое. Поэтому натурный эксперимент - необходимое звено исследования. Неточность расчетов компенсируется увеличением объема натурных экспериментов, созданием ряда опытных образцов и “доводкой” изделия до нужного состояния. Так поступали и поступают при создании, например, телевизора или радиостанции нового образца. Однако во многих случаях натурный эксперимент невозможен. Например, наиболее полную оценку новому виду вооружения и способам его применения может дать война. Но не будет ли это слишком поздно? 6
Натурный эксперимент с новой конструкцией самолета может вызвать гибель экипажа. Натурное исследование нового лекарства опасно для жизни человека. Натурный эксперимент с элементами космических станций также может вызвать гибель людей. Время подготовки натурного эксперимента и проведение мероприятий по обеспечению безопасности часто значительно превосходят время самого эксперимента. Многие испытания, близкие к граничным условиям, могут протекать настолько бурно, что возможны аварии и разрушения части или всего объекта. Из сказанного следует, что натурный эксперимент необходим, но в то же время невозможен либо нецелесообразен. Выход из этого противоречия есть и называется он “моделирование”. Моделирование - это замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала. Отсюда следует. Моделирование - это, во-первых, процесс создания или отыскания в природе объекта, который в некотором смысле может заменить исследуемый объект. Этот промежуточный объект называется моделью. Модель может быть материальным объектом той же или иной природы по отношению к изучаемому объекту (оригиналу). Модель может быть мысленным объектом, воспроизводящим оригинал логическими построениями или математическими формулами и компьютерными программами. Моделирование, во-вторых, это испытание, исследование модели. То есть, моделирование связано с экспериментом, отличающимся от натурного тем, что в процесс познания включается “промежуточное звено” - модель. Следовательно, модель является одновременно средством эксперимента и объектом эксперимента, заменяющим изучаемый объект. Моделирование, в-третьих, это перенос полученных на модели сведений на оригинал или, иначе, приписывание свойств модели оригиналу. Чтобы такой перенос был оправдан, между моделью и оригиналом должно быть сходство, подобие. Подобие может быть физическим, геометрическим, структурным, функциональным и т. д. Степень подобия может быть разной - от тождества во всех аспектах до сходства только в главном. Очевидно, модели не должны воспроизводить полностью все стороны изучаемых объектов. Достижение абсолютной одинаковости сводит моделирование к натурному эксперименту, о возможности или целесообразности которого было уже сказано. Остановимся на основных целях моделирования. Прогноз - оценка поведения системы при некотором сочетании ее управляемых и 7
неуправляемых параметров. Прогноз - главная цель моделирования. Объяснение и лучшее понимание объектов. Здесь чаще других встречаются задачи оптимизации и анализа чувствительности. Оптимизация - это точное определение такого сочетания факторов и их величин, при котором обеспечиваются наилучший показатель качества системы, наилучшее по какому-либо критерию достижение цели моделируемой системой. Анализ чувствительности - выявление из большого числа факторов тех, которые в наибольшей степени влияют на функционирование моделируемой системы. Исходными данными при этом являются результаты экспериментов с моделью. Часто модель создается для применения в качестве средства обучения: моделитренажеры, стенды, учения, деловые игры и т. п. Моделирование как метод познания применялось человечеством - осознанно или интуитивно - всегда. На стенах древних храмов предков южно-американских индейцев обнаружены графические модели мироздания. Учение о моделировании возникло в средние века. Выдающаяся роль в этом принадлежит Леонардо да Винчи (1452-1519). Гениальный полководец А. В. Суворов перед атакой крепости Измаил тренировал солдат на модели измаильской крепостной стены, построенной специально в тылу. Наш знаменитый механик-самоучка И. П. Кулибин (1735-1818) создал модель одноарочного деревянного моста через р. Неву, а также ряд металлических моделей мостов. Они были полностью технически обоснованы и получили высокую оценку российскими академиками Л. Эйлером и Д. Бернулли. К сожалению, ни один из этих мостов не был построен. Огромный вклад в укрепление обороноспособности нашей страны внесли работы по моделированию взрыва - генерал-инженер Н. Л. Кирпичев, моделированию в авиастроении - М. В. Келдыш, С. В. Ильюшин, А. Н. Туполев и др., моделированию ядерного взрыва - И. В. Курчатов, А.Д. Сахаров, Ю. Б. Харитон и др. Широко известны работы Н. Н. Моисеева по моделированию систем управления. В частности, для проверки одного нового метода математического моделирования была создана математическая модель Синопского сражения - последнего сражения эпохи парусного флота. В 1833 году адмирал П. С. Нахимов разгромил главные силы турецкого флота. Моделирование на вычислительной машине показало, что Нахимов действовал практически безошибочно. Он настолько верно расставил свои корабли и нанес первый удар, что единственное спасение турок было отступление. Иного выхода у них не было. Они не отступили и были разгромлены. Сложность и громоздкость технических объектов, которые могут изучаться методами моделирования, практически неограниченны. В последние годы все крупные сооружения исследовались на моделях - плотины, каналы, Братская и Красноярская ГЭС, системы дальних электропередач, образцы военных систем и др. объекты. Поучительный пример недооценки моделирования - гибель английского броненосца “Кэптен” в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское 8
могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец “Кэптен”. В него было вложено все, что нужно для “верховной власти” на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами - для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель устойчивости “Кэптена” и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и, добавим мы, о тупоумии самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования. 1.2. Классификация моделей и моделирования Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации, и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации: характер моделируемой стороны объекта; характер процессов, протекающих в объекте; способ реализации модели. 1.2.1. Классификация моделей и моделирования по признаку “характер моделируемой стороны объекта” В соответствии с этим признаком модели могут быть: функциональными (кибернетическими); структурными; информационными. Функциональные модели отображают только поведение, функцию моделируемого объекта. В этом случае моделируемый объект рассматривается как “черный ящик”, имеющий входы и выходы. Физическая сущность объекта, природа протекающих в нем процессов, структура объекта остаются вне внимания исследователя, хотя бы потому, что неизвестны. При функциональном моделировании эксперимент состоит в наблюдении за выходом моделируемого объекта при искусственном или естественном изменении входных воздействий. По этим данным и строится модель поведения в виде некоторой математической функции. Компьютерная шахматная программа - функциональная модель работы человеческого мозга при игре в шахматы. 9
Структурное моделирование - это создание и исследование модели, структура которой (элементы и связи) подобна структуре моделируемого объекта. Как мы выяснили ранее, подобие устанавливается не вообще, а относительно цели исследования. Поэтому она может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры - это топологическое описание с помощью теории графов. Учение войск - структурная модель вида боевых действий. 1.2.2. Классификация моделей и моделирования по признаку “характер процессов, протекающих в объекте” По этому признаку модели могут быть детерминированными или стохастическими, статическими или динамическими, дискретными или непрерывными или дискретнонепрерывными. Детерминированные модели отображают процессы, в которых отсутствуют случайные воздействия. Стохастические модели отображают вероятностные процессы и события. Статические модели служат для описания состояния объекта в какой-либо момент времени. Динамические модели отображают поведение объекта во времени. Дискретные модели отображают поведение систем с дискретными состояниями. Непрерывные модели представляют системы с непрерывными процессами. Дискретно-непрерывные модели строятся тогда, когда исследователя интересуют оба эти типа процессов. Очевидно, конкретная модель может быть стохастической, статической, дискретной или какой-либо другой, в соответствии со связями, показанными на рис. 1.1. 1.2.3. Классификация моделей и моделирования по признаку “способ реализации модели” Согласно этому признаку модели делятся на два обширных класса: абстрактные (мысленные) модели; материальные модели. 10