Программные продукты и системы, 2024, том 37, № 1
международный научно-практический журнал
Бесплатно
Основная коллекция
Издательство:
НИИ Центрпрограммсистем
Наименование: Программные продукты и системы
Год издания: 2024
Кол-во страниц: 134
Дополнительно
Тематика:
ББК:
УДК:
ОКСО:
- 02.00.00: КОМПЬЮТЕРНЫЕ И ИНФОРМАЦИОННЫЕ НАУКИ
- 09.00.00: ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА
- 10.00.00: ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
Научно-исследовательский институт «Центрпрограммсистем» Программные продукты и системы НАУЧНЫЙ ЖУРНАЛ 2024, том 37, № 1 (год издания тридцать седьмой) Главный редактор Г.И. САВИН, академик РАН SOFTWARE & SYSTEMS Research Journal 2024, vol. 37, no. 1 Editor-in-Chief G.I. SAVIN, Academician of the Russian Academy of Sciences Research Institute CENTERPROGRAMSYSTEM
ПРОГРАММНЫЕ ПРОДУКТЫ И СИСТЕМЫ Научный журнал 2024. Т. 37. № 1 DOI: 10.15827/0236-235X.142 Главный редактор Г.И. САВИН, академик РАН Научные редакторы номера: Н.А. СЕМЕНОВ, д.т.н., профессор А.Н. СОТНИКОВ, д.ф.-м.н., профессор Издатель НИИ «Центрпрограммсистем» (г. Тверь, Россия) Учредитель В.П. Куприянов Журнал зарегистрирован в Роскомнадзоре 3 марта 2020 г. Регистрационное свидетельство ПИ № ФС 77-77843 Подписной индекс в каталоге Урал-Пресс 70799 ISSN 0236-235X (печатн.) ISSN 2311-2735 (онлайн) РЕДАКЦИОННАЯ КОЛЛЕГИЯ Семенов Н.А. – заместитель главного редактора, д.т.н., профессор Тверского государственного технического университета (г. Тверь, Россия) Сотников А.Н. – заместитель главного редактора, д.ф.-м.н., профессор, заместитель директора Межведомственного суперкомпьютерного центра РАН (г. Москва, Россия) Афанасьев А.П. – д.ф.-м.н., профессор Московского физико-технического института (технического университета), заведующий Центром распределенных вычислений Института проблем передачи информации РАН (г. Москва, Россия) Баламетов А.Б. – д.т.н., профессор Азербайджанского научно-исследовательского и проектно-изыскательского института энергетики (г. Баку, Азербайджан) Борисов В.В. – д.т.н., профессор филиала Национального исследовательского университета «МЭИ» в г. Смоленске (г. Смоленск, Россия) Голенков В.В. – д.т.н., профессор Белорусского государственного университета информатики и радиоэлектроники (г. Минск, Беларусь) Елизаров А.М. – д.ф.-м.н., профессор Института математики и механики им. Н.И. Лобачевского Казанского федерального университета (г. Казань, Россия) Еремеев А.П. – д.т.н., профессор Национального исследовательского университета «МЭИ» (г. Москва, Россия) Кузнецов О.П. – д.т.н., профессор Института проблем управления РАН (г. Москва, Россия) Мамросенко К.А. – к.т.н., доцент Московского авиационного института (национального исследовательского университета), руководитель Центра визуализации и спутниковых информационных технологий НИИСИ РАН (г. Москва, Россия) Палюх Б.В. – д.т.н., профессор Тверского государственного технического университета (г. Тверь, Россия) Сулейманов Д.Ш. – академик АН Республики Татарстан, д.т.н., профессор Казанского государственного технического университета (г. Казань, Республика Татарстан, Россия) Татарникова Т.М. – д.т.н., доцент, профессор Санкт-Петербургского государственного электротехнического университета «ЛЭТИ» им. В.И. Ульянова (Ленина) (г. Санкт-Петербург, Россия) Ульянов С.В. – д.ф.-м.н., профессор, ведущий научный сотрудник Объединенного института ядерных исследований (г. Дубна, Россия) Хорошевский В.Ф. – д.т.н., профессор Московского физико-технического института (технического университета) (г. Москва, Россия) Шабанов Б.М. – д.т.н., чл.-корр. РАН, директор Межведомственного суперкомпьютерного центра РАН (г. Москва, Россия) Язенин А.В. – д.ф.-м.н., профессор Тверского государственного университета (г. Тверь, Россия) АССОЦИИРОВАННЫЕ ЧЛЕНЫ РЕДАКЦИИ Национальный исследовательский университет «МЭИ», г. Москва, Россия Технологический институт Южного федерального университета, г. Таганрог, Россия Тверской государственный технический университет, г. Тверь, Россия АДРЕС ИЗДАТЕЛЯ И РЕДАКЦИИ Россия, 170024, г. Тверь, просп. Николая Корыткова, д. 3а Телефон (482-2) 39-91-49 Факс (482-2) 39-91-00 E-mail: red@cps.tver.ru Сайт: www.swsys.ru Дата выхода в свет 16.03.2024 г. Отпечатано ИПП «Фактор и К» Россия, 170100, г. Тверь, ул. Крылова, д. 26 Выпускается один раз в квартал Год издания тридцать седьмой Формат 6084 1/8. Объем 132 стр. Заказ № 4. Тираж 1000 экз. Цена 550,00 руб.
SOFTWARE & SYSTEMS Research journal 2024, vol. 37, no. 1 DOI: 10.15827/0236-235X.142 Editor-in-chief G.I. SAVIN, Academician of RAS Science editors of the issue: N.A. Semenov, Dr.Sc. (Engineering), Professor A.N. Sotnikov, Dr.Sc. (Physics and Mathematics), Professor Publisher Research Institute CENTERPROGRAMSYSTEM (Tver, Russian Federation) Founder V.P. Kupriyanov The journal is registered with the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) March 3rd, 2020 Registration certificate ПИ № ФС 77-77843 ISSN 0236-235X (print) ISSN 2311-2735 (online) EDITORIAL BOARD Semenov N.A. – Deputy Editor-in-Chief, Dr.Sc. (Engineering), Professor of the Tver State Technical University (Tver, Russian Federation) Sotnikov A.N. – Deputy Editor-in-Chief, Dr.Sc. (Physics and Mathematics), Professor, Deputy Director of the Joint Supercomputer Center of the Russian Academy of Sciences (Moscow, Russian Federation) Afanasiev A.P. – Dr.Sc. (Physics and Mathematics), Professor of the Moscow Institute of Physics and Technology, Head of Centre for Distributed Computing of Institute for Information Transmission Problems (Moscow, Russian Federation) Balametov A.B. – Dr.Sc. (Engineering), Professor of the Azerbaijan Scientific-Research & Design-Prospecting Power Engineering Institute (Baku, Azerbaijan) Borisov V.V. – Dr.Sc. (Engineering), Professor of the MPEI Branch in Smolensk (Smolensk, Russian Federation) Golenkov V.V. – Dr.Sc. (Engineering), Professor of the Belarusian State University of Informatics and Radioelectronics (Minsk, Republic of Belarus) Elizarov A.M. – Dr.Sc. (Physics and Mathematics), Professor of the N.I. Lobachevsky Institute of Mathematics and Mechanics of the Kazan Federal University (Kazan, Russian Federation) Eremeev A.P. – Dr.Sc. (Engineering), Professor of the National Research University Moscow Power Engineering Institute (Moscow, Russian Federation) Kuznetsov O.P. – Dr.Sc. (Engineering), Professor of the Institute of Control Sciences of the Russian Academy of Sciences (Moscow, Russian Federation) Mamrosenko K.A. – Ph.D. (Engineering), Associate Professor of the Moscow Aviation Institute (National Research University), Head of the Center of Visualization and Satellite Information Technologies SRISA RAS (Moscow, Russian Federation) Palyukh B.V. – Dr.Sc. (Engineering), Professor of the Tver State Technical University (Tver, Russian Federation) Suleimanov D.Sh. – Academician of TAS, Dr.Sc. (Engineering), Professor of the Kazan State Technical University (Kazan, Republic of Tatarstan, Russian Federation) Tatarnikova T.M. – Dr.Sc. (Engineering), Associate Professor, Professor of the St. Petersburg Electrotechnical University LETI (St. Petersburg, Russian Federation) Ulyanov S.V. – Dr.Sc. (Physics and Mathematics), Professor of the Dubna International University for Nature, Society and Man (Dubna, Russian Federation) Khoroshevsky V.F. – Dr.Sc. (Engineering), Professor of the Moscow Institute of Physics and Technology (Moscow, Russian Federation) Shabanov B.M. – Dr.Sc. (Engineering), Corresponding Member of the RAS, Director of the Joint Supercomputer Center of the Russian Academy of Sciences (Moscow, Russian Federation) Yazenin A.V. – Dr.Sc. (Physics and Mathematics), Professor of the Tver State University (Tver, Russian Federation) ASSOCIATED EDITORIAL BOARD MEMBERS National Research University Moscow Power Engineering Institute, Moscow, Russian Federation Technology Institute at Southern Federal University, Taganrog, Russian Federation Tver State Technical University, Tver, Russian Federation EDITORIAL BOARD AND PUBLISHER OFFICE ADDRESS Nikolay Korytkov Ave, 3а, Tver, 170024, Russian Federation Phone: (482-2) 39-91-49 Fax: (482-2) 39-91-00 E-mail: red@cps.tver.ru Website: www.swsys.ru Release date 16.03.2024 Printed in printing-office Faktor i K Krylova St. 26, Tver, 170100, Russian Federation Published quarterly. 37th year of publication Format 6084 1/8. Circulation 1000 copies Prod. order № 4. Wordage 132 pages. Price 550,00 rub.
Вниманию авторов Журнал «Программные продукты и системы» публикует материалы научного и научно-практического характера по новым информационным технологиям, результаты академических и отраслевых исследований в области использования средств вычислительной техники. Практикуются выпуски тематических номеров по искусственному интеллекту, системам автоматизированного проектирования, по технологиям разработки программных средств и системам защиты, а также специализированные выпуски, посвященные научным исследованиям и разработкам отдельных вузов, НИИ, научных организаций. Журнал «Программные продукты и системы» внесен в Перечень ведущих рецензируемых научных жур налов и изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней кандидата и доктора наук. Информация об опубликованных статьях по установленной форме регулярно предоставляется в систему РИНЦ, в CrossRef и в другие базы и электронные библиотеки. Журнал «Программные продукты и системы» включен в ядро коллекции РИНЦ, размещенное на плат форме Web of Science в виде базы данных RSCI. Автор статьи отвечает за подбор, оригинальность и точность приводимого фактического материала. При перепечатке ссылка на журнал обязательна. Статьи публикуются бесплатно. Условия публикации К рассмотрению принимаются оригинальные материалы, отвечающие редакционным требованиям и со ответствующие тематике журнала. Группы научных специальностей: 1.2. Компьютерные науки и информатика 1.2.1. Искусственный интеллект и машинное обучение (физико-математические науки). 1.2.2. Математическое моделирование, численные методы и комплексы программ (физико-математиче ские науки, технические науки) 2.3. Информационные технологии и телекоммуникации 2.3.1. Системный анализ, управление и обработка информации, статистика (технические науки, физико математические науки). 2.3.2. Вычислительные системы и их элементы (технические науки). 2.3.3. Автоматизация и управление технологическими процессами и производствами (технические науки). 2.3.5. Математическое и программное обеспечение вычислительных систем, комплексов и компьютер ных сетей (технические науки, физико-математические науки). 2.3.6. Методы и системы защиты информации (технические науки, физико-математические науки). 2.3.7. Компьютерное моделирование и автоматизация (технические науки, физико-математические науки). 2.3.8. Информатика и информационные процессы (технические науки). Работа представляется в электронном виде в формате Word. Объем статьи вместе с иллюстрациями – не менее 10 000 знаков. Диаграммы, схемы, графики должны быть доступными для редактирования (Word, Visio, Excel). Заголовок должен быть информативным; сокращения, а также терминологию узкой тематики желательно в нем не использовать. Количество авторов на одну статью – не более 4, количество статей одного автора в номере, включая соавторство, – не более 2. Список литературы, наличие которого обязательно, должен включать не менее 10 пунктов. Необходимы также содержательная структурированная аннотация (не менее 200 слов), ключевые слова (7–10) и индекс УДК. Название статьи, аннотация и ключевые слова должны быть переведены на английский язык (машинный перевод недопустим), а фамилии авторов, названия и юридические адреса организаций (если нет официального перевода) – транслитерированы по стандарту BGN/PCGN. Вместе со статьей следует прислать экспертное заключение о возможности открытого опубликования материала и авторскую справку. Обзательно соблюдение автором договора (публичной оферты). Порядок рецензирования Все статьи, поступающие в редакцию (соответствующие тематике и оформленные согласно требованиям к публикации), подлежат двойному слепому рецензированию в течение месяца с момента поступления, рецензия отправляется авторам. В редакции сформирован устоявшийся коллектив рецензентов, среди которых члены редколлегии жур нала, эксперты из числа крупных специалистов в области информатики и вычислительной техники ведущих вузов страны, а также ученые и специалисты НИИСИ РАН, МСЦ РАН (г. Москва) и НИИ «Центрпрограммсистем» (г. Тверь). Редакция журнала «Программные продукты и системы» в своей работе руководствуется сводом правил Кодекса этики научных публикаций, разработанным и утвержденным Комитетом по этике научных публикаций (Committee on Publication Ethics – COPE).
Программные продукты и системы / Software & Systems 37(1), 2024 5 Software & Systems doi: 10.15827/0236-235X.142.005-017 2024, 37(1), pp. 5–17 Software emulator of quantum algorithms for sophisticated simulation on a conventional computer Sergey V. Ulyanov 1, 2, Viktor S. Ulyanov 3 1 Dubna State University – Institute of System Analysis and Management, Dubna, 141980, Russian Federation 2 Joint Institute for Nuclear Research – Meshcheryakov Laboratory of Information Technologies, Dubna, 141980, Russian Federation 3 Moscow State University of Geodesy and Cartography (MIIGAiK), Moscow, 105064, Russian Federation For citation Ulyanov, S.V., Ulyanov, V.S. (2024) ‘Software emulator of quantum algorithms for sophisticated simulation on a conventional computer’, Software & Systems, 37(1), pp. 5–17 (in Russ.). doi: 10.15827/0236-235X.142.005-017 Article info Received: 14.09.2023 After revision: 21.09.2023 Accepted: 05.10.2023 Abstract. A quantum software engineering platform includes quantum computing methods, a quantum algorithm theory and quantum programming. These areas develop according to a technological structure of nanotechnology development for hardware design of various configurations. In about 10 to 30 years we expect the appearing of an industrial quantum computer for real software engineering; this fact is due to overcoming a number of technological difficulties in implementing hardware, as well as the fundamental difficulty of eliminating decoherence physical phenomenon and correcting errors in quantum computers in near future. A key question in quantum computing is searching for quantum algorithms that potentially have a significant advantage and supremacy over classical algorithms for problems of practical interest. Therefore, currently, an approach is being developed to create quantum algorithm structures for quantum simulators with the possibility of effective implementation on classical architecture computers. This paper proposes an effective modelling method with information analysis of quantum search and decision-making algorithm structures in order to eliminate redundancy in practical implementation of a simulator on a classical structure computer. As an example, we demonstrate the method of modeling Grover's quantum search algorithm with stopping the search for a good solution based on the Shannon information entropy minimum principle. There are modeling examples to demonstrate the effectiveness of the developed approach in quantum software engineering and intelligent control robotics. Keywords: quantum algorithm, quantum software engineering, quantum computing, quantum simulator, minimum of Shannon information entropy, termination criteria Introduction. The history of quantum compu ting starts around the 1980s when during the First Conference on the Physics of Computation Richard Feynman showed that it is not effective to simulate a quantum system evolution on a classical computer. An effective simulation of quantum system has a run-time in polynomial size, i.e. the computational time is smaller than a polynomial function of the problem size. Therefore, relevant simulations of quantum computers will always be larger in size than polynomial time. This leads to superpolynomial time simulations of quantum algorithms; these kinds of simulations have a long runtime for large problems. By separating the problems in smaller parts, we can avoid long runtime. For example, simulating Shor’s factoring algorithm on a classical computer takes super-polynomial time. The simulation of quantum algorithms is still constructive for parts of a larger problem and it gives us a basis for comparing experimental and theoretical results. The results from Shor’s algorithm might be verified by multiple factors from an algorithm outcome and hence it is simple to check the results from Shor’s factoring algorithm implemented on a quantum computer. It might be more complicated to check the outputs from future algorithms. However, it is possible to show that Shor’s al gorithm gives mathematically correct results. But how can we verify that implementing Shor’s algorithm on a quantum computer coincides with its mathematical model? A simulation of a quantum algorithm on a classical computer allows comparing a quantum computer outcome with an output form a physically more stable classical computer. When developing quantum algorithms, it is interesting to check new algorithms on a classical computer. This study examines quantum algorithm simulation on a classical computer. The program code implemented on a classical computer will be a straight connection between the mathematical formulation of quantum mechanics and computational methods. A computational language includes such terms as a quantum state, a superposition and other quantum operators.
Программные продукты и системы / Software & Systems 37(1), 2024 6 Quantum algorithm general structure The problem solved by a quantum algorithm (QA) can be stated in the symbolic form: Input Function f: {0, 1}n → {0, 1}m. Problem Find a certain property of function f. A given function f is a map of one logical state into another, QA estimates qualitative properties of function f. Fig. 1 demonstrates a general circuit description of QA. Three main quantum operators (as the superpo sition, the entanglement (quantum oracle) and the interference) are a background of QA structure design for implementing quantum massive parallel computing. Therefore, they include the matrix design form of three quantum operators: superposition (Sup), entanglement (UF) and interference (Int) (see, below Fig. 2). The structure of a quantum algorithmic gate (QAG) in Fig. 1 in a general form can be defined as follows: ( ) 1 , h n n m F QAG Int I U H S + = (1) where I is an identity operator; symbol denotes a tensor product; S is equal to I or H and depends on a problem description. The type of operator UF physically describes the qualitative properties of function f. Figure 2 shows QA steps including described qualitative peculiarities of function f and physical interpretation of applied quantum operators. The quantum circuit (Fig. 2) is a high-level de scription of a method for composing smaller matrices using tensor and dot products in order to generate a finite QAG. For example, Fig. 3 represents a general ap proach to Grover’ QAG design [1]. The presented HW performs all functional steps of a Grover’s QSA. A termination condition criterion is a minimum entropy-based method that is implemented in a digital part together with display output [2]. There are fast algorithms to simulate most of known QAs on classical computers [1] and in computational intelligence toolkit: 1) Matrix-based approach; 2) Model representations of quantum operators in fast QAs; 3) Algorithmic-based approach when matrix elements are calculated on demand; 4) Problem-oriented approach, where we succeeded to run Grover’s algorithm with up to 64 and more qubits with Shannon entropy calculation (up to 1024 without a termination condition); 5) Quantum algorithms with a reduced number of operators (entanglement-free QA, and so on). In this article we briefly describe main blocks in Fig. 3: a) unified operators; b) problem-oriented operators; c) benchmarks of QA simulation on classical computers; d) quantum control algorithms based on quantum fuzzy inference (QFI) Fig. 1. QA general description Input n m 0 0 H H ... x x S S ... UF INT Superposition Entanglement Interference Output h h h h bit bit bit bit ... ... M E A S U R E M E N T ... ... Repeated k times Fig. 2. QA general structure Qualitative properties of function Quantum Massive Parallel Computing fin = QC output Classical input Quantum Fourier transformation Problem oriented operator Hadamard transformation Coding of function properties Qualitative properties of function Quantum Oracle Black BOX initial [ (Interference) (Quantum Oracle) ] (Superposition) Answer QAG design Quantum knowledge base optimizer Problem Soft Computing optimizer
Программные продукты и системы / Software & Systems 37(1), 2024 7 and quantum genetic algorithm (QGA) as new QSA types. Description of quantum operators: SW smart toolkit support In terms of simulation, we consider the struc ture of quantum operators as a superposition, entanglement and interference. In this case a superposition and an interference have a more complicated structure and differ from an algorithm to an algorithm [3–5]. We also focus on considering entanglement operators, since they have a similar structure for all QAs and differ only by an analyzed function [6–8]. QA superposition operators. In general form, a superposition operator is a combination of tensor products of Hadamard H operators with identity operator I: 1 1 1 0 1 , . 1 1 0 1 2 H I = = − The superposition operator of most QAs (see Fig. 1) can be expressed as: 1 1 n m i i Sp H S = = = , where n and m are the numbers of inputs and outputs respectively. Operator S may be Hadamard H operator or identity operator I depending on the algorithm. Table 1 presents the number of outputs m, as well as the structures of corresponding superposition and interference operators for different QAs. Table 1 Parameters of superposition and interference operators of main quantum algorithms Algorithm Superposition m Interference Deutsch’s H I 1 H H Deutsch-Jozsa’s nH H 1 nH I Grover’s nH H 1 n D I Simon’s n n H I n n n H I Shor’s n n H I n n n QFT I Elements of the Walsh-Hadamard operator could be obtained as following: ( ) * /2 /2 , 1 1, if is even, 1 1, if is odd, 2 2 i j n n n i j i j H i j − = = − (2) where 0,1, ..., 2 , 0,1, ..., 2 . n n i j = = Its elements could be obtained by the simple replication according to the rule presented in Eq. (2). Thus, this approach greatly improves the performance of classical simulation of the Walsh–Hadamard operators. Interference operators of main QAs. Interfer ence operators must be selected individually for each algorithm according to the parameters presented in Table 1; for Grover’s algorithm they can be written as a block matrix: /2 , /2 /2 1 2 1 1 1 , 2 2 Grover n n n i j n n i j i j Int D I I I I I = = = − = = − + = Fig. 3. Circuit and quantum gate representation of Grover’s QSA
Программные продукты и системы / Software & Systems 37(1), 2024 8 /2 , , 1 , , 2 n I i j I i j − = = (3) where 0, ..., 2 1, 0, ..., 2 1 n n i j = − = − , Dn refers to a diffusion operator: 1 ( ) /2 , ( 1) 2 AND i j n n i j D = − = [9–12]. Note that with the increasing number of qubits, the gain coefficient becomes smaller. The matrix dimension increases according to 2n, but each element can be extracted using Eq. (3) without allocating the entire operator matrix. In a certain form, the operator Dn (diffusion – inversion about average) in Grover’s algorithm is decomposed as follows: 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 2 0 0 0 1 n n n n n D − = − − and can be implemented with ( ) (log( )) O n O N = quantum gates. In terms of efficient computation, it means that the form in Eq. (3) is more preferable. Entanglement operators of main QAs. Entan glement operators in a general form are a part of QA; the information about the function (being analyzed) is coded as an input-output relation. In the general approach to coding binary functions into corresponding entanglement gates, an arbitrary binary function is considered as: : 0,1 0,1 , n m f → such that 0 1 0 1 ( , ..., ) ( , ..., ) n m f x x y y − − = . First, irre versible function f transforms into reversible function F as following: : 0,1 0,1 , m n m n F + + → and ( ) 0 1 0 1 0 1 0 1 0 1 , ..., , , ..., ( , ..., , ( , ..., ) ( , ..., )), n m n n m F x x y y x x f x x y y − − − − − = = where denotes addition by module 2. This transformation creates a unitary quantum operator and performs a similar transformation. It is possible design an entanglement operator matrix using reversible function F according to the following rule: , 1 iff ( ) , , 0,..,0;1,..,1; . B B B B F i j n m n m U F j i i j + + = = B denotes binary coding. A diagonal block matrix of the form: 0 2 1 0 0 n F M U M − = is actually a resulted entan glement operator. Each block , 0, ..., 2 1 n i M i = − can be ob tained as follows: 1 0 , iff ( , ) 0, , iff ( , ) 1, m i k I F i k M C F i k − = = = = (4) and consists of m tensor products of I or C operators, where C stays for NOT operator. Note that an entanglement operator is a sparse matrix and according to this property (4) it is possible to accelerate entanglement operation simulation. Structure of QA simulation system in MatLab Figure 4 shows a software system structure for QA simulation. The software system is divided into two general sections. The first section involves common functions. The second section involves algorithm-specific functions for implementing particular algorithms. Common functions. The common functions in clude: • superposition building blocks, • interference building blocks, • bra-ket functions, • measurement operators, • entropy calculation operators, • visualization functions, • state visualization functions, • operator visualization functions. Algorithm specific functions. Algorithmic spe cific functions include: • entanglement encoders, • problem transformers, • result interpreters, • algorithm execution scripts, • Deutsch algorithm execution script, • Deutsch Jozsa algorithm execution script, • Grover’s algorithm execution script, • Shor’s algorithm execution script, • quantum control algorithms as scripts. Visualization functions. Visualization func tions are functions that provide visualization display of quantum state vector amplitudes and quantum operator structure. Algorithmically-specific functions. Algorithmi cally-specific functions provide a set of scripts for QA execution in a command line and tools for QA simulation including quantum control algorithms. The functions of section 2 prepare the appropriate operators of each algorithm and use common functions as operands. QA simulation by a command line. The exam ple of the Grover’s algorithm script is presented at the link http://swsys.ru/uploaded/image/2024-1/Ulyanov.html.
Программные продукты и системы / Software & Systems 37(1), 2024 9 Other known QA can be formulated and exe cuted by similar scripts, and using the corresponding equations presented earlier [9–11]. Simulating QA as a dynamic system. In order to simulate dynamic system behavior with quantum effects, it is possible to represent QA as a dynamic system in the form of a block diagram and then simulate its behavior in time. Figure 5 shows an example of a quantum circuit Simulink diagram to calculate the fidelity <a|a> of the quantum state and to calculate the density matrix |a><a| of the quantum state. Bra and ket functions are from the common library. This example demonstrates using common functions to simulate QA dynamics. In Fig. 6, the input is ket function. The ket func tion output is provided to the first input of the matrix multiplier and as the second input of the matrix multiplier. The input is also provided to the bra function. The bra function output is provided to the second input of the matrix multiplier and as the first input of the matrix multiplier. The multiplier output is an input state density matrix. The multiplier output is the input state fidelity. Figure 7 shows Simulink structure of an arbi trary QA. We can use such structure to simulate a number of quantum algorithms in Matlab/Simulink environment. Dedicated QA emulator Developments in QA algorithmic representa tion are also applicable for designing QA software emulators. A key point is reducing multiple matrix operations to vector operations and the following replacement of multiplication operations. This may increase emulation performance, especially for algorithms that do not require complex number operations, and when a quantum state vector has a relatively simple structure (like Grover’s QSA). The developed software can simulate 4 basic quantum algorithms, e.g. Deutsch-Jozsa, Shor’s, Simon’s and Grover’s. The system uses a unified user-friendly interface for all algorithms providing 3D visualization of state vector dynamics and quantum operators. On the QA emulator launch window, you can choose to create a new QA model or continue modeling the existing one (http://www.swsys.ru/ uploaded/image/2024-1/13.jpg). If we choose creating a new model, then algo rithm selection dialog starts. Here we can choose QA and its dimensions. In fact, the system may operate with up to 50 qubits and more, but, it is better to limit the number of qubits to 10–11 due to visualization problems. Fig. 4. Structure of QA simulation software
Программные продукты и системы / Software & Systems 37(1), 2024 10 Once algorithm initial parameters are set, the system draws an initial state vector and selects an algorithm structure in the system’s main window (Fig. 7). The main window (Fig. 7) contains all infor mation of the emulated quantum algorithm and enables basic operations and analysis. The form menu has an access to involved quantum operators (Fig. 8), and it is possible to modify input functions. QAs have reversible nature; therefore, it is pos sible to make forward and backward algorithm steps by clicking on arrows; currently applied algorithm step will be highlighted on the algorithm diagram. The emulator menu consists of four compo nents: 1. Item File provides basic operations, such as project save/load, and new model creation interface access. 2. Item Model provides an access to the input function editor. 3. Item View provides an access to operator matrix visualizers, including Superposition, En tanglement and Interference operators. It is also possible to get 3D preview of algorithm state dynamics (Fig. 9). 4. From Help menu there is an access to the program documentation. Fig. 5. Simulink diagram for simulating the arbitrary quantum algorithm Fig. 6. Simulink diagram for simulating an arbitrary quantum algorithm Fig. 7. Main window of QA emulator software (3 qubit Grover QSA)