Математика. Математический анализ 1
Математический анализ для экономистов: краткий обзор
Данное учебное пособие, предназначенное для студентов экономического направления, представляет собой введение в математический анализ, охватывающее дифференциальное и интегральное исчисление функций одной переменной. Книга написана на английском языке и предполагает знакомство с основами математики на уровне средней школы. Цель пособия – обеспечить прочное и понятное введение в предмет, сочетая изучение теории с решением задач и использованием компьютерных методов.
Предел и непрерывность
Первый раздел посвящен основам математического анализа, начиная с базовых понятий и обозначений, используемых в математике. Рассматриваются различные типы чисел, функции, графики на декартовой плоскости, включая основные геометрические формулы. Отдельное внимание уделяется комплексным числам, их свойствам, операциям и геометрической интерпретации. Далее рассматриваются последовательности и пределы, включая арифметические и геометрические последовательности, свойства пределов и понятие сходимости.
Дифференциальное исчисление
Второй раздел посвящен дифференциальному исчислению. Здесь рассматриваются пределы и непрерывность функций, включая свойства непрерывных функций и теоремы о непрерывности. Далее следует изучение производной, ее геометрического смысла и правил дифференцирования. Рассматриваются высшие производные, неявное дифференцирование, правило Лопиталя и теорема о среднем значении. Завершается раздел обсуждением построения графиков функций, включая анализ экстремумов, выпуклости и вогнутости.
Интегральное исчисление
Третий раздел посвящен интегральному исчислению. Рассматривается неопределенный интеграл, его свойства и методы вычисления. Далее следует изучение определенного интеграла, его свойств и теоремы Ньютона-Лейбница. Обсуждаются несобственные интегралы и методы вычисления определенных интегралов.
Дополнительные темы
В заключительных разделах рассматриваются полиномы Тейлора, ряды, включая интегральный, сравнительный, знакочередующийся, радикальный и степенные ряды. Особое внимание уделяется ряду Тейлора.
Текст подготовлен языковой моделью и может содержать неточности.
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАНСОВЫЙ УНИВЕРСИТЕТ) Департамент математики В.Б. Гисин МАТЕМАТИКА МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1 Учебное пособие для студентов, обучающихся по направлению «Экономика» МОСКВА 2023
ISBN 978-5-00172-481-0 УДК 519.85 ББК 22.16 Г51 Рецензенты: А.В. Чечкин, доктор физико-математических наук, профессор департамента математики Финансового университета при Правительстве Российской Федерации; О.Е.Орел, кандидат физико-математических наук, доцент кафедры высшей математики Московского физикотехнического института (МФТИ). Г51 Гисин В.Б. Математика. Математический анализ 1: Учебное пособие / В.Б. Гисин. — М.: Прометей, 2023. — 148 с. ISBN 978-5-00172-481-0 Математика. Математический анализ 1: учебное пособие для студентов, обучающихся по направлению «Экономика» 38.03.01 — программа подготовки бакалавра Пособие предназначено для студентов, изучающих математику на английском языке. Пособие содержит учебный материал, относящийся к введению в математический анализ и таким его разделам, как дифференциальное и интегральное исчисление функций одной переменной. © В.Б. Гисин, 2023 © Издательство «Прометей», 2023
PREFACE The mathematics needed for the study of economics changes with each passing year. The share of “theoretical math” decreases giving place to computer methods. The manual is designed to present a thorough, easily understood introduction to univariate calculus. The best way to study mathematics with this manual is to combine the study of calculus with the study of digital mathematics using computers. The book offers a brief review of basic concepts and notations for those who are going to learn math in English. The theory-and-solved-problem format of each chapter provides concise explanations illustrated by examples. No mathematical proficiency beyond the high school level is assumed at the start. Formulas and tables are numbered inside each section. The figures are numbered end-to-end.
CONTENTS PRECALCULUS .............................................................................6 1.1. BASIC NOTATIONS ................................................ 6 Signs and Symbols. Functions. Sets. Greek Alphabet 1.2. GRAPHS ON THE CARTESIAN PLANE....................11 Rectangular coordinates. The Graph of an Equation 1.3. FUNCTIONS .........................................................16 Basic Notions. Elementary Functions. Symmetry. Transformations. Basic Shapes 1.4. COMPLEX NUMBERS ...........................................36 The Set of Complex Numbers. Addition, Subtraction, and Multiplication of Complex Numbers. Complex Conjugate. A Quotient of Complex Numbers. Complex Solutions of a Quadratic Equation. Fundamental Theorem of Algebra. The Complex Plane. Operations with Complex Numbers in Polar Form. Roots of Degree n 1.5. SEQUENCES AND LIMITS .....................................49 Finite and Infinite Sequences. Arithmetic Sequences. Geometric Sequences. Properties of Sequences. Limit of a Sequence. Selected Sequences. Properties of limits. Convergence to Infinity. Properties of Infinite Limits UNIVARIATE CALCULUS .........................................................62 2.1. LIMITS AND CONTINUITY ....................................62 Limits. Properties of Limits. Continuity. Combinations of Continuous Functions. Properties of Continuous Functions. Locating Roots of Equations. Infinite Limits. Vertical Asymptotes. Limits at Infinity (the End Behavior). Oblique Asymptotes. Infinite Limits at Infinity. Selected Limits 2.2. THE DERIVATIVE ................................................80 Differentiability at a Point. The Derivative Function. Differential. Techniques of Differentiation.
Higher Derivatives. Implicit Differentiation L’Hopital’s Rule. Mean-Value Theorem. Graph Sketching. A General Graphing Procedure 2.3. INTEGRATION .....................................................99 The Indefinite Integral. Properties of the Indefinite Integral. The Definite Integral (Riemann Integral) The Fundamental Theorem of Calculus. Improper Integrals. Specificity of the integration techniques for evaluating definite integrals 2.4. TAYLOR POLYNOMIAL ....................................... 122 2.5. SERIES ............................................................. 127 The Integral Test. The Comparison Test. Alternating Series Test. The Ratio Test. The Root Test. Power Series. The Taylor series. INDEX ........................................................................................140
PRECALCULUS 1.1. BASIC NOTATIONS Signs and Symbols N = { , ,...} 1 2 set of natural numbers Z { , , ,...} 0 1 2 set of integer numbers Q a b a b Z b { | , , } 0 set of rational numbers R set of real numbers C a bi a b R i { | , , } 2 1 set of complex numbers a b = a equals b, a is equal to b, identity a b ≠ a is not equal to b, a does not equal to b, a is other than b a b < a is less than b a b ≤ a is less than or equal to b a b > a is greater than b a b ≥ a is greater than or equal to b a > 0 a is a positive number, a is greater than 0 a ≥ 0 a is a non-negative number
a b + addition, a plus b, sum of a and b, a, b are the summands a b − subtraction, a minus b, difference between a and b a b ⋅ multiplication, a times b, product of a and b, a, b are the factors a b division, a divided by b, a over b, quotient of a and b, a is the numerator, b is the denominator ½, 2/3, 2½ one half, two thirds, two and a half 0.01 nought point nought one 5%, 2/5% five per cent, two fifth per cent a a a i i n n 1 1 ... sum over ai of i equals 1 up to n a a a i i n n 1 1 ... product over ai of i equals 1 up to n ∞ infinity Functions f X Y : → f is a transformation of X into Y X , D f f Y ( ) ( ) 1 domain of f Y , R f f X ( ) ( ) = codomain of f, range of f xn x to the power of n, nth power of x for n ≥ 0 x2 x squared
x3 x cubed x , x n square root of x, n-th root of x n! n factorial | | x absolute value of x sgn x sign of x (sgn5 1 = , sgn3 1, sgn0 0 = ) ex , exp x exponential function of x, e to the power of x log a x logarithm (log) of x (to) base a ln x natural logarithm (log) of x (to base e) sin x sine of x cos x cosine of x sec cos x x = 1 secant of x csc sin x x = 1 cosecant of x tan x , tg x tangent of x cot x , ctg x cotangent of x arcsin x , sin−1 x arc sine of x, inverse sine of x arccos x , cos−1 x arc cosine of x, inverse cosine of x arctan x , arctg x arc tangent of x, inverse tangent of x Sets a b c , , ,... set with the elements a, b, c, … a A ∈ a is an element of A, e.g. 3∈Z (3 is an integer)
a A ∉ a is an element of A, e.g. 2 ∉Q ( 2 is not rational number) x M P x | ( ) The set of all elements in M satisfying condition P, e.g. x x Z| , 2 5 3 4 A B ⊆ A is a subset of B (any element of A is an element of B), A is included in B A B ⊂ A is a proper subset of B (is a subset and unequal) A B ∪ A union B, A or B, includes all occurring elements (x is in A B ∪ if and only if x is in A or x is in B) A B ∩ A intersection B, A and B, includes all common elements (x is in A B ∪ if and only if x is in A and x is in B) A B \ A not B include all elements of A that are not in B A B × A cross B, cartesian product of A and B, set of all (ordered) pairs from A and B A A A n n ... the set of all ordered n-tuples ( ,..., ) x xn 1 , x A i ∈ , i n = 1,..., , e.g. R R 2 3 , ∅ Empty set Greek Alphabet Letters (upper case, lower case) Name Pronunciation alpha ′ælfə beta ′bi:tə gamma ′gæmə delta ′deltə
epsilon ′epsəlɔn xi ksai eta ′i:tə zeta ′zi:tə iota ai′əυtə kappa ′kæpə lambda ′læmbə mu ′mju: nu ′nju: omicron ′əυməkrυn pi pai rho rəυ sigma ′sigmə tau taυ upsilon ′ʌpsəlυn theta ′θi:tə phi fai psi psai chi kai omega əυ′migə