Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Сборник задач по сопротивлению материалов

Покупка
Основная коллекция
Артикул: 664842.03.01
Доступ онлайн
от 656 ₽
В корзину
Приведены задачи для всех разделов курса «Сопротивление материалов», изучаемого студентами в соответствии с действующей программой для вузов России. Наряду с классическими приемами оценки прочности даются основные понятия механики разрушения и методики расчетов на прочность, жесткость и устойчивость конструкций. Подробное решение задач позволяет изучать предмет студентам дневной и заочной форм обучения. Нетрадиционное построение задачника направлено на улучшение усвоения материала. Практически все задачи сопровождаются ответами. В приложении к задачнику даны некоторые справочные материалы: таблицы ГОСТов, значения функций А.Н. Крылова и гиперболических функций, а также данные, относящиеся к расчету на прочность при циклических напряжениях. Соответствует требованиям федеральных государственных образовательных стандартов высшего образования последнего поколения. Предназначено для студентов, обучающихся по всем специальностям железнодорожного транспорта, изучающим сопротивление материалов.

Сборник задач по сопротивлению материалов: Ключ к пониманию и применению

Представленный сборник задач по сопротивлению материалов, предназначенный для студентов высших учебных заведений, охватывает широкий спектр тем, необходимых для освоения этой важной инженерной дисциплины. Он включает в себя задачи различной сложности, от простых до более продвинутых, с подробными решениями, что делает его полезным как для аудиторной работы, так и для самостоятельного изучения.

Растяжение и сжатие: Основы прочности

Первый раздел посвящен основам сопротивления материалов, таким как растяжение и сжатие. Здесь рассматриваются статически определимые системы, где внутренние усилия могут быть определены только с помощью уравнений равновесия. Задачи включают построение эпюр продольных сил, определение нормальных напряжений в различных сечениях, а также расчеты на прочность и деформации. Особое внимание уделяется анализу напряжений в конструкциях с отверстиями и определению усилий в стержнях, работающих на растяжение или сжатие.

Статически неопределимые системы: Учет связей

Далее рассматриваются статически неопределимые системы, где число связей превышает количество уравнений равновесия. Для решения таких задач необходимо учитывать деформации, что позволяет составить дополнительные уравнения совместности деформаций. Рассматриваются примеры, включающие температурные напряжения, а также задачи, связанные с конструкциями, подверженными различным нагрузкам и воздействиям.

Моменты инерции: Геометрия сечений

Второй раздел посвящен моментам инерции плоских фигур. Здесь рассматриваются методы определения положения центра тяжести сечений, вычисления моментов инерции относительно различных осей, а также анализ геометрических характеристик тонкостенных стержней.

Сдвиг и кручение: Передача усилий

Третий раздел посвящен сдвигу и кручению. Рассматриваются расчеты заклепочных и болтовых соединений, построение эпюр крутящих моментов, а также расчеты на прочность и жесткость бруса круглого поперечного сечения.

Напряженное и деформированное состояние: Анализ в точке

Четвертый раздел посвящен анализу напряженного и деформированного состояния в точке упругого тела. Рассматриваются методы определения главных напряжений, построение эпюр напряжений, а также применение обобщенного закона Гука.

Изгиб прямых стержней: Расчет балок

Пятый раздел посвящен изгибу прямых стержней. Здесь рассматриваются построение эпюр поперечных сил и изгибающих моментов, определение нормальных и касательных напряжений в балках, а также расчет балок в упругопластической стадии.

Определение перемещений при изгибе: Метод Максвелла-Мора

Шестой раздел посвящен определению перемещений при изгибе. Рассматривается метод непосредственного интегрирования и метод Максвелла-Мора.

Статически неопределимые системы: Продолжение анализа

Седьмой раздел посвящен статически неопределимым балкам. Рассматриваются методы определения опорных реакций, построение эпюр внутренних усилий, а также анализ балок с промежуточными шарнирами.

Сложное сопротивление: Комбинация нагрузок

Восьмой раздел посвящен сложному сопротивлению, когда стержни подвергаются одновременному действию нескольких видов нагрузок. Рассматриваются примеры, включающие косой изгиб, внецентренное растяжение или сжатие, а также одновременное действие изгиба и продольной силы.

Устойчивость и продольно-поперечный изгиб: Предельные состояния

Девятый раздел посвящен устойчивости и продольно-поперечному изгибу стержней. Рассматриваются расчет сжатых стержней по формуле Эйлера, а также расчет сжатых стержней на устойчивость по эмпирическим формулам.

Задачи динамики в сопротивлении материалов: Учет инерции

Десятый раздел посвящен задачам динамики в сопротивлении материалов. Рассматриваются расчеты на удар, а также собственные и вынужденные колебания систем с одной степенью свободы.

Прочность при переменных напряжениях: Усталость

Одиннадцатый раздел посвящен прочности при переменных напряжениях. Рассматриваются расчеты на усталость, а также применение теории прочности Мора.

Тонкостенные стержни: Расчет сосудов

Двенадцатый раздел посвящен тонкостенным стержням. Рассматриваются расчеты тонкостенных цилиндрических и сферических сосудов, а также расчет тонкостенных стержней открытого профиля.

В целом, сборник задач по сопротивлению материалов представляет собой ценный ресурс для студентов, изучающих эту важную инженерную дисциплину. Он обеспечивает глубокое понимание основных принципов, а также развивает навыки решения практических задач.

Текст подготовлен языковой моделью и может содержать неточности.

Лукьянов, А. М. Сборник задач по сопротивлению материалов : учебное пособие / А.М. Лукьянов, М.А. Лукьянов. — Москва : ИНФРА-М, 2023. — 546 с. — (Высшее образование: Специалитет). — DOI 10.12737/989326. - ISBN 978-5-16-014537-2. - Текст : электронный. - URL: https://znanium.ru/catalog/product/2127135 (дата обращения: 02.07.2025). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов
СБОРНИК ЗАДАЧ 

ПО СОПРОТИВЛЕНИЮ 

МАТЕРИАЛОВ

А.М. ЛУКЬЯНОВ
М.А. ЛУКЬЯНОВ

Рекомендовано Межрегиональным учебно-методическим советом 

профессионального образования в качестве учебного пособия для студентов 

высших учебных заведений, обучающихся  по направлениям подготовки 

23.05.03 «Подвижной состав железных дорог», 23.05.04 «Эксплуатация железных дорог», 
23.05.05 «Системы обеспечения движения поездов», 23.05.06 «Строительство железных 
дорог, мостов и транспортных тоннелей» (квалификация «инженер путей сообщения») 

(протокол № 3 от 17.02.2020)

УЧЕБНОЕ ПОСОБИЕ

Москва 
ИНФРА-М 

202
УДК 539.3/.6(075.8)
ББК 30.121я73
 
Л84

А в т о р ы:

Лукьянов А.М., доктор технических наук, профессор кафедры 

строительной механики Института пути, строительства и сооружений Российского университета транспорта (МИИТ);

Лукьянов М.А., кандидат технических наук, доцент кафедры строи
тельной механики Института пути, строительства и сооружений Российского университета транспорта (МИИТ)

Р е ц е н з е н т ы:

Коссов Е.Е., доктор технических наук, профессор, заведующий отде
лением ОАО «ВНИИЖТ»;

Кузьмин Л.Ю., кандидат технических наук, профессор кафедры 

высшей математики и строительной механики Московского архитектурного института (государственной академии)

ISBN 978-5-16-014537-2 (print)
ISBN 978-5-16-107042-0 (online)

© Лукьянов А.М., Лукьянов М.А., 

2020

Лукьянов А.М.

Л84  
Сборник задач по сопротивлению материалов : учебное пособие / 

А.М. Лукьянов, М.А. Лукьянов. — Москва : ИНФРА-М, 2023. — 
546 с. — (Высшее образование: Специалитет). — DOI 10.12737/989326.

ISBN 978-5-16-014537-2 (print)
ISBN 978-5-16-107042-0 (online)
Приведены задачи для всех разделов курса «Сопротивление материа
лов», изучаемого студентами в соответствии с действующей программой 
для вузов России. Наряду с классическими приемами оценки прочности 
даются основные понятия механики разрушения и методики расчетов 
на прочность, жесткость и устойчивость конструкций.

Подробное решение задач позволяет изучать предмет студентам днев
ной и заочной форм обучения. Нетрадиционное построение задачника 
направлено на улучшение усвоения материала. Практически все задачи 
сопровождаются ответами.

В приложении к задачнику даны некоторые справочные материалы: 

таблицы ГОСТов, значения функций А.Н. Крылова и гиперболических 
функций, а также данные, относящиеся к расчету на прочность при циклических напряжениях.

Соответствует требованиям федеральных государственных образова
тельных стандартов высшего образования последнего поколения.

Предназначено для студентов, обучающихся по всем специальностям же
лезнодорожного транспорта, изучающим сопротивление материалов.

УДК 539.3/.6(075.8)

ББК 30.121я73

Предисловие

Задачник соответствует методике преподавания сопротивления 
материалов на кафедре строительной механики Российского университета транспорта (МИИТ), разработанной докторами технических наук, профессорами А.В. Александровым и В.Д. Потаповым. Он предназначен как преподавателями для использования 
в процессе проведения практических занятий, так и студентам 
для укрепления навыков в решении задач.
Цель пособия — помочь студентам овладеть методами решения 
поставленных задач, повысить эффективность самостоятельных 
занятий. Вопросы, с которыми знакомятся, изучая книгу, будущие 
инженеры, всегда будут актуальными.
Подготавливая задачник, авторы стремились учесть требования, предъявляемые современной высшей школой к учебному 
материалу. Книга предназначена для студентов вузов железнодорожного транспорта, а также для студентов, обучающихся строительным специальностям, и будет способствовать укреплению навыков в освоении изучаемой дисциплины.
Поскольку пособие содержит материал различной степени 
сложности, он может быть использован студентами иных специальностей, для которых предусмотрено менее детальное изучение 
курса сопротивления материалов.
Авторы задачника получили много полезных советов и замечаний при подготовке рукописи к печати от преподавателей 
кафедры строительной механики, в частности от профессоров 
Б.П. Державина, Ю.И. Романова, а также от доцентов И.И. Монахова, Е.И. Мелешонкова и Г.А. Мануйлова, которым авторы выражают глубокую благодарность.
Авторы выражают благодарность инженеру Л.И. Лукьяновой 
за помощь при подготовке рукописи к изданию.
Искреннюю благодарность авторы выражают рецензентам профессору Л.Ю. Кузьмину и доктору технических наук, профессору 
Е.Е. Коссову, а также коллективу сотрудников кафедры «Высшая 
математика и строительная механика» Московского архитектурного института (Государственная академия; МАРХИ) за замечания, которые во многом способствовали улучшению содержания 
учебника.

Авторы с благодарностью примут все замечания и пожелания 
от преподавателей и студентов, пользующихся сборником задач, 
и постараются в дальнейшем учесть их.
Все пожелания и замечания, относящиеся к задачнику, просим 
направлять в адрес издательства.

Введение

В задачнике использована Международная система единиц (СИ).
Значения физических величин, как правило, представляются 
в виде десятичных кратных и долевых единиц, получаемых от исходных единиц СИ путем их умножения на 10 в соответствующей 
степени. Наименование десятичных кратных и долевых единиц 
образуется присоединением приставок к наименованиям исходных 
единиц (табл. В1).

Таблица В1

Кратные и дольные единицы СИ

Приставка
Обозначение
Множитель
Приставка
Обозначение
Множитель

Тера
Т
1012
Деци
д
10–1

Гига
Г
109
Санти
с
10–2

Мега
М
106
Милли
м
10–3

Кило
к
103
Микро
мк
10–6

Гекто
г
102
Нано
н
10–9

Дека
да
101
Пико
п
10–12

Приставки рекомендуется выбирать таким образом, чтобы числовые значения величин находились в пределах от 0,1 до 1000. 
Например, сила F 15,4 кН (килоньютона), но не 0,0154 МН (меганьютона) или 1540 даН (деканьютонов).
Для каждой физической величины, как правило, следует применять одно (основное) наименование. Например, в качестве характеристики количества вещества, заключенного в теле, следует применять массу (а не вес); в качестве параметра вещества — плотность, 
определяемую как отношение массы к объему.
Основные механические величины в единицах СИ и соотношения между ними и прежними единицами приведены в табл. В2.

Таблица В2

Соотношения между единицами физических величин

Наименование
величины

Единица
Соотношение 
единиц
наименование
обозначение

Сила, нагрузка, вес
Ньютон
Н
1 Н  0,1 кгс;
1 кН  0,1 тс

Наименование
величины

Единица
Соотношение 
единиц
наименование
обозначение

Линейная нагрузка
Ньютон на метр
Н/м
1 Н/м  
0,1 кгс/м;
1 кН/м  0,1 тс/м
Поверхностная нагрузка, механическое 
напряжение, модуль 
упругости

Паскаль (ньютон 
на квадратный 
метр) 

Па
1 Па  0,1 кгс/м 2;
1 кПа  0,1 тс/м 2;
1 МПа  0,1 кгс/м 2

Момент силы, момент 
пары сил
Ньютон на метр
Н⋅м
1 Н⋅м  0,1 кгс⋅м;
1 кН⋅м  0,1 тс⋅м
Работа (энергия) 
Джоуль
Дж
1 Дж  0,1 кгс⋅м
Мощность
Ватт (джоуль в секунду) 
Вт
1 Вт  0,1 кгс⋅м/с

Данные, общие для всех задач
Если в условиях задач отсутствуют специальные указания, 
то при их решении следует принимать следующие средние значения физических характеристик материалов.
Расчетное сопротивление отливок и прокатной стали: стали Ст 3: 
растяжению, сжатию и изгибу R = 210 МПа, срезу Rср = 130 МПа; 
стали 14Г2 R = 290 МПа; срезу болтов Rб
cр = 200 МПа и их смятию 
Rб
cм
 = 380 МПа в болтовых соединениях; срезу угловых швов в сварных 
соединениях из стали Ст 3 Rу
св = 150 МПа и из стали 14Г2 Rу
св = 200 МПа.
Некоторые другие характеристики материалов приведены 
в табл. В3.
Таблица В3

Некоторые характеристики материалов

Материал

Модули упругости
Тем пе ратур ный 
коэф фици ент, α

Коэффициент 
Пуассона
μ

Плотность 
ρ, кг/м 2
Е, ГПа 
(кг/см 2) 
G, ГПа
(кг/см 2) 

Сталь
Чугун
Медь
Алюминий 
и дюраль
Дерево

200 (2·106)
100 (1·106)
100 (1·106)
70 (0,7·106)

10 (0,1·106) 

80 (8·105)
45 (4,5·105)
40 (4,0·105)
27 (2,7·105)

0,55 (0,055·105) 

12·10–6

10·10–6

16·10–6

23·10–6

—

0,30
0,25
0,32
0,30

—

7850
7200
8500
2700

550 
(сосна)
750 (дуб) 

Окончание табл. В2

Глава 1. 
РАСТЯЖЕНИЕ И СЖАТИЕ

1.1. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ

Продольную силу N будем считать положительной, если она 
вызывает растяжение, т.е. направлена от сечения, и отрицательной, 
если она вызывает сжатие, т.е. направлена к сечению.
При построении эпюры продольных сил положительные значения N будем откладывать вверх от горизонтальной базисной 
линии или вправо от вертикальной базисной линии, отрицательные 
значения N, соответственно, будем откладывать в противоположном направлении, т.е. либо вниз, либо влево.
Задача 1.1. Для стального стержня, нагруженного тремя силами, 
изображенного на рис. 1.1, а, построить эпюру продольных сил.
Решение. Разобьем стержень на три участка (на рис. 1.1, а участки 
обозначены римскими цифрами), начиная от правого (не закрепленного) конца. Границами участков будут сечения, в которых приложены внешние сосредоточенные силы.
Сначала найдем закономерность изменения продольной силы 
на первом участке. Для этого в произвольном месте участка I проведем сечение 1–1 и отбросим левую часть стержня, так как к ней 
приложено больше сил, включая неизвестную реакцию в заделке. 
Действие отброшенной части на оставшуюся заменим внутренним 
усилием N1, предполагая его положительным (растягивающим) 
и соответственно направим от сечения (рис. 1.1, б).
Знак искомого усилия, получаемый из решения, позволит установить:
1) правилен ли был выбор направления продольной силы N;
2) какой вид деформации при этом возникает — растяжение 
или сжатие.
Оставшаяся (правая) часть стержня, нагруженная внешней 
силой 50 кН и внутренним усилием N1, находится в равновесии (см. 
рис. 1.1, б).
Запишем уравнение равновесия для этой части стержня:
участок I в сечении 1–1 (0 ≤ z1 ≤ 3l):

Ост.ч.
 
ΣZ = 0, N1 – 50 = 0, откуда N1 = 50 кН.

z

z

z

z

z

Рис. 1.1. К задаче 1.1

Следовательно, продольная сила будет направлена от сечения, 
т.е. будет растягивающей и постоянной в пределах участка I.
Определим характер изменения продольной силы на участке II. 
Проведем в произвольном месте этого участка сечение 2–2. Вновь 
отбросим левую часть стержня; действие отброшенной части заменим положительной продольной силой N2 (рис. 1.1, в).
Составим уравнение равновесия для оставшейся части:
участок II в сечении 2–2 (0 ≤ z2 ≤ 4l):

Ост.ч.
 
ΣZ = 0, N2 + 75 – 50 = 0, N2 = –25 кН.

Следовательно, продольная сила будет направлена в противоположную сторону, т.е. к сечению, и соответственно будет сжима
ющей (на рис. 1.1, в действительное направление силы N2 показано 
пунктиром), постоянной и на участке II.
Из полученных выражений видно, что продольная сила в поперечных сечениях стержня численно равна алгебраической сумме 
проекций внешних сил на ось стержня, приложенных к его оставшейся части (ост.ч.):

Ост.ч.
 
Ni = ΣFiz.

Поэтому при определении продольной силы в сечениях стержня 
можно использовать следующий способ. Достаточно мысленно 
представить себе оставшуюся часть, нагруженную приложенными 
к ней внешними силами с условной заделкой в проведенном сечении, как показано на рис. 1.1, г. В соответствии с принятым правилом знаков для N, используя принцип независимости действия 
сил, составим выражение для продольной силы.
Так, для участка III, применяя указанный прием, определим 
значение продольной силы:
участок III в сечении 3–3 (0 ≤ z3 ≤ 2l):

 
N3 = 50 – 75 – 30 = –55 кН.

Знак плюс у силы 50 кН принят таковым, потому что эта сила 
вызывает растяжение рассматриваемой, условно закрепленной 
части стержня, а знак минус у сил 75 и 30 кН принят таковым, потому что они вызывают сжатие. Следовательно, продольная сила 
будет сжимающей и постоянной.
Таким образом, при действии на стержень только внешних сосредоточенных сил, направленных вдоль его оси, продольная сила 
на всех участках будет постоянной.
Построим эпюру продольных сил. Проведем базисную линию 
параллельно оси стержня; в масштабе отложим положительные 
значения продольных сил вверх от этой линии, а отрицательные — 
вниз. Масштаб для ординат следует выбирать по наибольшему 
значению продольной силы. Знаки и их значения указываются 
на эпюре. Вид эпюры N показан на рис. 1.1, д.
Задача 1.2. Для стержня, нагруженного системой взаимно уравновешенных сил (рис. 1.2, а), определить значение интенсивности1 
n равномерно распределенной продольной нагрузки и построить 
эпюру продольных сил.

1 
Интенсивность — величина распределенной нагрузки, приходящаяся на 
единицу длины балки.

F

z
z
z

z

z

z

Рис. 1.2. К задаче 1.2

Решение. Стержень (рис. 1.2, а) находится в равновесии. Поэтому значение интенсивности n равномерно распределенной нагрузки определим из уравнения равновесия:
 
ΣZ = 20 – 30 — n · 3 + 40 = 0, n = 30/3 = 10 кН/м.
При составлении этого уравнения использовалось известное положение: равнодействующая распределенной нагрузки равна:

 

0
10
10

z

n
R
dz
z
=
=
∫
.

В нашем случае n = 10 кН/м = const, а следовательно, при z = 3 
Rn = 10 · 3 = 30 кН. Полученное при решении уравнения равновесия 

Доступ онлайн
от 656 ₽
В корзину