Электроника и схемотехника
Покупка
Основная коллекция
Тематика:
Схемотехника. Общие вопросы
Издательство:
Инфра-Инженерия
Год издания: 2023
Кол-во страниц: 184
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Бакалавриат
ISBN: 978-5-9729-1289-6
Артикул: 816236.01.99
Рассматривается элементная база электроники, полупроводниковые приборы и материалы, р-п-переход и его свойства, диоды, биполярные и полевые транзисторы, тиристоры, интегральные схемы, логические элементы, триггеры. Представлены основы аналоговой, цифровой схемотехники и микропроцессорной техники. Для студентов электротехнических направлений. Может быть полезно специалистам в области промышленной электроники, схемотехники, приборостроения.
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Бакалавриат
- 11.03.04: Электроника и наноэлектроника
- 12.03.01: Приборостроение
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
С. А. Микаева, А. Н. Брысин, Ю. А. Журавлева ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА Учебное пособие Москва Вологда «Инфра-Инженерия» 2023 1
УДК 621.382 ББК 32.844.1 М59 Рецензенты: профессор кафедры цифровых и аддитивных технологий Института перспективных технологий и индустриального программирования Российского технологического университета (МИРЭА) д-р техн. наук, проф. П. Н. Шкатов; заведующий базовой кафедрой источников света Института электроники и светотехники Национального исследовательского Мордовского государственного университета (ФГБОУ ВО «МГУ им. Н. П. Огарева») д-р техн. наук, доц. А. А. Ашрятов Микаева, С. А. М59 Электроника и схемотехника : учебное пособие / С. А. Микаева, А. Н. Брысин, Ю. А. Журавлева. – Москва ; Вологда : Инфра-Инженерия, 2023. – 184 с. : ил., табл. ISBN 978-5-9729-1289-6 Рассматривается элементная база электроники, полупроводниковые приборы и материалы, р-n-переход и его свойства, диоды, биполярные и полевые транзисторы, тиристоры, интегральные схемы, логические элементы, триггеры. Представлены основы аналоговой, цифровой схемотехники и микропроцессорной техники. Для студентов электротехнических направлений. Может быть полезно специалистам в области промышленной электроники, схемотехники, приборостроения. УДК 621.382 ББК 32.844.1 ISBN 978-5-9729-1289-6 Микаева С. А., Брысин А. Н., Журавлева Ю. А., 2023 Издательство «Инфра-Инженерия», 2023 Оформление. Издательство «Инфра-Инженерия», 2023 2
-¢ª¡ª¤¬§¤ ПРЕДИСЛОВИЕ........................................................................................................ 5 1. ЭЛЕМЕНТНАЯ БАЗА ЭЛЕКТРОНИКИ ......................................................... 6 1.1. Полупроводниковые приборы ......................................................................... 6 1.1.1. Общие сведения .......................................................................................... 6 1.1.2. Полупроводниковые материалы ............................................................... 7 1.1.3. P-n-переход и его свойства ........................................................................ 9 1.1.4. Полупроводниковые диоды ..................................................................... 14 1.1.5. Биполярные транзисторы ......................................................................... 23 1.1.6. Полевые транзисторы ............................................................................... 29 1.1.7. Тиристоры .................................................................................................. 33 Контрольные вопросы ........................................................................................ 34 1.2. Интегральные схемы ....................................................................................... 35 Контрольные вопросы ........................................................................................ 37 1.3. Система обозначений полупроводниковых приборов и интегральных микросхем ............................................................................................................... 37 Контрольные вопросы ........................................................................................ 39 Тестовые задания ................................................................................................ 39 Задачи ................................................................................................................... 40 2. ОСНОВЫ АНАЛОГОВОЙ СХЕМОТЕХНИКИ ........................................... 51 2.1. Усилительные устройства .............................................................................. 51 2.1.1. Классификация усилителей ..................................................................... 51 2.1.2. Параметры и характеристики усилителей .............................................. 52 2.1.3. Принцип работы усилителя ..................................................................... 55 2.1.4. Усилители напряжения с общим эмиттером (усилительный каскад с коллекторной нагрузкой) ................................................................................. 56 2.1.5. Эмиттерный повторитель ......................................................................... 62 2.1.6. Усилительный каскад на полевом транзисторе ..................................... 64 2.1.7. Истоковый повторитель ........................................................................... 65 2.1.8. Усилители мощности ................................................................................ 66 2.1.9. Многокаскадные усилители ..................................................................... 69 2.1.10. Усилитель постоянного тока ................................................................. 71 2.1.11. Обратные связи в усилителях ................................................................ 74 2.1.12. Операционный усилитель ...................................................................... 75 2.1.13. Избирательный усилитель ..................................................................... 78 Контрольные вопросы ........................................................................................ 80 2.2. Генераторы электрических сигналов ............................................................ 80 Контрольные вопросы ........................................................................................ 84 2.3. Источники питания электронных устройств ................................................ 84 2.3.1. Однополупериодный выпрямитель ......................................................... 85 2.3.2. Мостовая схема выпрямителя ................................................................. 86 3
2.3.3. Сглаживающие фильтры .......................................................................... 87 2.3.4. Внешняя характеристика выпрямителя .................................................. 89 2.3.5. Стабилизаторы напряжения ..................................................................... 90 Контрольные вопросы ........................................................................................ 91 Тестовые задания ................................................................................................ 91 Задачи ................................................................................................................... 94 3. ОСНОВЫ ЦИФРОВОЙ СХЕМОТЕХНИКИ .............................................. 102 3.1. Общие сведения ............................................................................................. 102 Контрольные вопросы ...................................................................................... 105 3.2. Электронные ключи и простейшие формирователи импульсов .............. 105 Контрольные вопросы ...................................................................................... 113 3.3. Импульсный режим работы операционных усилителей ........................... 113 Контрольные вопросы ...................................................................................... 117 3.4. Логические элементы. Серии цифровых интегральных схем .................. 117 Контрольные вопросы ...................................................................................... 126 3.5. Триггеры ......................................................................................................... 127 Контрольные вопросы ...................................................................................... 130 3.6. Счетчики импульсов ..................................................................................... 130 Контрольные вопросы ...................................................................................... 132 3.7. Регистры, дешифраторы, мультиплексоры ................................................ 133 Контрольные вопросы ...................................................................................... 136 3.8. Цифро-аналоговые и аналого-цифровые преобразователи (ЦАП и АЦП) .......................................................................... 136 Контрольные вопросы ...................................................................................... 141 Тестовые задания .............................................................................................. 142 Задачи ................................................................................................................. 145 4. ОСНОВЫ МП-ТЕХНИКИ .............................................................................. 162 4.1. Требования к микропроцессорной системе ................................................ 162 Контрольные вопросы ...................................................................................... 165 4.2. Что такое микропроцессор" ......................................................................... 165 Контрольные вопросы ...................................................................................... 167 4.3. Шинная структура связей ............................................................................. 167 Контрольные вопросы ...................................................................................... 172 4.4. Режимы работы микропроцессорной системы .......................................... 172 Контрольные вопросы ...................................................................................... 176 4.5. Архитектура микропроцессорных систем .................................................. 176 Контрольные вопросы ...................................................................................... 178 4.6. Типы микропроцессорных систем ............................................................... 179 Контрольные вопросы ...................................................................................... 180 Тестовые задания .............................................................................................. 181 Задачи ................................................................................................................. 182 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ....................................... 183 4
®¯¤£§°ª-¡§¤ Данное учебное пособие может быть рекомендовано для самостоятельного изучения студентами при очном и дистанционном формате обучения и самостоятельной подготовке к предметам «Электроника», «Микропроцессорная техника», «Электроника и схемотехника». Снижение фактического времени до формата шестнадцать часов лекций, шестнадцать часов практических занятий приводит к увеличению времени самостоятельной работы самих студентов и накладывает на них определенные требования к уровню самостоятельной работы. Короткие классические конспекты лекций в этих условиях не дают эффективности, а ссылки на многотомные пособия, в которых материал размещен на больших обьемах, значительно усложняют восприятие основополагающих вещей. В связи с этим возник вопрос реализации небольшого по обьему учебного пособия с размещенным отдельно дополнительным графическим материалом. В отличие от классических лекций, в дистанционной форме существенно снижена вербальная связь преподавателя с аудиторией, что может быть частично компенсировано различными техническими элементами, например, функцией «контроль активности». С другой стороны, формат видеолекций вносит повышенные требования к плотности изложения материала, существенные ограничения на время переноса графического материала в конспект. В связи с этим возникает потребность введения в очный формат обучения некоторых элементов интенсивных (инновационных) технологий обучения, широко применяемых при заочной и вечерней форме обучения. Учебное пособие разбито на четыре раздела – первые два посвящены аналоговой электронике, а третий и четвертый разделы охватывают цифровую схемотехнику и основы микропроцессорной техники. После каждого раздела авторами представлены контрольные вопросы и тестовые задания для проверки знаний изученного материала. 5
¼ª¤«¤¬±¬¾ ¦¼ª¤©±¯-¬§©§ ®ÍÊÒÎÏÍÁÍÃÌÇÉÍÁÚÄÎÏÇÀÍÏÚ -ÀØÇÄÐÁÄÃÄÌÇÞ Электроника – область науки и техники, изучающая физические явле- ния в полупроводниковых и электровакуумных приборах, электрические характеристики и параметры этих приборов, принципы построения и свойства устройств с их использованием. В своем развитии электроника прошла несколько этапов. Первое электронное устройства (конец XIX – середина XX века) выполнялись на электровакуумных приборах (электронных лампах). С середины && века широкое применение нашли полупроводниковые приборы (транзисторы, диоды, тиристоры), изготовляемые как отдельные, самостоятельные элементы, из которых собирались электронные устройства. В последнюю четверть && века основой многих электронных устройств стали интегральные микросхемы, представляющие пластинку полупроводника с размещенными на ней множеством тран- зисторов и других элементов электрических цепей. Со времени их изобрете- ния (США, 1959 г.), интегральные микросхемы, постоянно совершенствуются и усложняются. В современных сверхбольших интегральных схемах счет уже идет на десятки миллионов транзисторов и других элементов. В настоящее время для решения тех или иных задач (преобразования вида энергии, усиление сигналов, генерирование мощных излучений, управление электродвигателями, обработки цифровой информации, и ее отображение и т. п.) используются все виды электронных приборов, но явное преимуще- ство сохраняется за полупроводниковыми приборами и микросхемами. Элементарная база электроники включает в себя пассивные (не преобразующие электрическую энергию) и активные (преобразующие электрическую энергию) элементы. К пассивным элементам относятся сопротивления (R), емкости (C) и индуктивности (L). Реальные компоненты, отражающие свойства R, C и L, – резисторы, конденсаторы и катушки индуктивности могут существенно отличаться от их идеальных моделей. Эти отличия зависят от технологии, материала и условий эксплуатации. Резисторы, помимо активного сопротивления, обладают ощутимой на высоких частотах проходной емкостью, включенной параллельно активному сопротивлению и составляющей от сотых долей до единиц пикофарад. Лакопленочные и иные резисторы, в которых используются сплошные слои проводящего материала, почти не имеют собственной индуктивности, и ею можно пренебречь вплоть до частот в сотни мегагерц, но между их проводящим слоем и другими частями схемы образуются паразитные конденсаторы с емкостями до несколько пикофарад. Как правило, эти емкости больше, чем проходные. 6
Другой недостаток резисторов этих типов – сильная зависимость активного сопротивления от времени, температуры и влажности. Обычно сопротивление резисторов не выходят из пределов, оговоренных в технических условиях, но нельзя применить их в устройствах, рассчитанных на меньшие отклонения. Проволочные резисторы обладают значительно большей температурой и временной стабильностью, но у них большие паразитные емкости и значительны паразитные индуктивности. В цепях, где точность и стабильность активных элементов имеет решающее значение, проволочные резисторы незаменимы. Реальные конденсаторы еще больше отличаются от идеала, чем резисторы. Прежде всего, у них есть сопротивление утечки, шунтирующее емкость. Для высококачественных конденсаторов (например, слюдяных, фторопластовых, керамических и т. п.) собственные утечки составляют при малой влажности и нормальной температуре гигаомы (1 ГОм = 109 Ом) и в большей ме- ре зависят от состояния поверхности корпуса или монтажной платы, чем от диэлектрика. Конденсаты с большими емкостями, например, электролитические, имеют сопротивление утечки в сотни иногда десятки килоом, но зато могут иметь емкости до десятков и сотен тысяч мкФ. Промежуточное положение занимают бумажные и пленочные конденсаторы. Катушки индуктивности, не имеющие ферромагнитных сердечников, могут быть достаточно близки к идеальной индуктивности, но даже в них сопротивление провода играет роль. В дросселях с сердечниками нелинейность последних приводит к тому, что отличия от идеальной индуктивности оказываются очень существенными. Другая особенность, вносимая сердечниками, – потери энергии на их перемагничивание и на вихревые токи Фуко в них. Эта энергия в конечном счете обращается в тепловую и ведет к нагреву сердечника. Последнее обстоятельство во многом определяет КПД и качество трансформаторов. ®ÍÊÒÎÏÍÁÍÃÌÇÉÍÁÚÄË¿ÑÄÏÇ¿ÊÚ Работа полупроводниковых приборов основана на использовании электрических свойств материалов, называемых полупроводниками. По электропроводности полупроводники занимают промежуточное положение между металлами и диэлектриками. Удельное электрическое сопротивление полупроводников при комнатной температуре лежит в пределах 10–3–1010 Ом·см. В качестве полупроводниковых веществ используется кремний (Si), германий (Ge) (элементы IV группы периодической системы Менделеева), а также селен, арсенид галлия, фосфид галлия, и др. Особенностью полупроводников отличительной от металлов и диэлектриков является их способность в широких пределах менять свою проводимость при изменении внешних энергетических воздействиях (температуры, света, электромагнитного поля, механических деформаций и т. д.). 7
Электропроводимость чистых однородных полупроводников при температуре, отличной от абсолютного нуля, обусловлена по парным образованием (генерацией) свободных носителей заряда – электронов и дырок. При сообщении полупроводнику определенной энергии один из электронов вырывает из узла связи кристаллической решетки и становится свободным, а освободившееся в узле решетки место приобретает положительный заряд, равный заряду электрона. Это вакантное для электронов место кристаллической решетки получило название дырки. Наряду с генерацией носителей заряда при их хаотичном движении происходит процесс рекомбинации – воссоединение (исчезновение) пары носителей заряда при встрече свободного электрона с дыркой. Устанавливается динамическое равновесие между количеством возникающих и исчезающих пар, и при неизменной температуре общее количество свободных носителей заряда остается постоянным. При приложении к проводнику внешнего электрического поля движение свободных зарядов упорядочивается, электроны и дырки движутся во взаимно противоположных направлениях вдоль силовой линии электрического поля. Электропроводность чистого проводника называется собственной. При обычных температурах количество свободных электронов и дырок в чистом полупроводнике невелико и составляет 1016–1018 в 1 см3 вещества. Такой полупроводник по своим электрическим свойствам приближается к диэлектрикам. Электрические свойства полупроводников существенно изменяются при введении в них определенных примесей. В качестве примесей используются элементы III и V групп периодической системы Менделеева. Введение, например, в кремний (элемент IV группы) в качестве примеси атомов мышьяка (элемент V группы) создает избыток свободных электронов за счет пятого валентного электрона на внешней оболочке атомов примеси. Удельное электрическое сопротивление такого полупроводника значительно уменьшается, в нем будет преобладать электронная электропроводность, а сам полупроводник называется полупроводником n-типа. Носители заряда, концентрация которых выше (в данном случае это электроны), называется основными носителями, а с меньшей концентрацией (дырки) – неосновными. Введение атомов примеси III группы (например, индия) создает дырочную электропроводность, в результате чего образуется полупроводник p-типа, здесь дырки – основные носители заряда, а электроны – неосновные. Примеси элементов V группы называют донорными, а примеси элементов III группы – акцепторными. На практике важное значение имеет область на границе соприкосновения двух полупроводников p- и n-типа. Эта область называется электронно-дырочным переходом, или p-n-переходом. Такой p-n-переход получают введением в примесный полупроводник дополнительной примеси. Например, при введении донорной примеси в определенную часть полупроводника p-типа в нем образуется область полупроводника n-типа, граничащая с полупроводником p-типа. 8
На основе использования полупроводниковых материалов с различным типом электропроводности создают полупроводниковые диоды, транзисторы, тиристоры и другие приборы. В частности, из полупроводника, равномерно легированного примесями, изготовляют полупроводниковые резисторы. В зависимости от типа примесей и конструкции получаются линейные резисторы, сопротивление которых остается практически постоянным в широком диапазоне напряжений и токов, либо резисторы, сопротивление которых зависит от таких управляющих параметров, как напряжение (варисторы), температура (терморезисторы), освещенность (фоторезисторы), механические деформации (тензорезисторы), магнитное поле (магниторезисторы) и др. Основными материалами при производстве полупроводниковых приборов являются кремний и германий. Из-за различий по физическим свойствам этих материалов, приборы, изготовленые на основе Si, – более стойкие к воздействию, к изменению внешней температуры, но обладают меньшем быстродействием. Приборы на основе Ge, более чувствительны к изменению внешней температуры, но обладают большим быстродействием. 3QÎÄÏÄÔÍÃÇÄÂÍÐÁÍÈÐÑÁ¿ В p-n-переходе концентрация основных носителей заряда в p- и n-областях могут быть равными или существенно различаться. В первом случае p-n-переход называется симметричным, во втором – несимметричным. Чаще используются несимметричные переходы. Пусть концентрация акцептной примеси в p-области больше, чем концентрация донорной примеси в n-области (рис. 1.1). Соответственно, и концентрация дырок (светлые кружки) в p-области будет больше, чем концентрация электронов (черные кружки) в n-области. За счет диффузии дырок из p-области и электронов из n-области они стремятся равномерно распределится по всему объему. Если бы электроны и дырки были нейтральными, то диффузия в конечном итоге привела бы к полному выравниванию их концентрации по всему объему кристалла. Однако этого не происходит. Дырки, переходя из p-области в n-область, рекомбинирую с частью электронов, принадлежащих атомам донорной примеси. В результа- те оставшиеся без электронов положительно заряженные ионы донорной примеси образуют приграничный слой с положительным зарядом. В то же время уход этих дырок из p-области приводит к тому, что атомы акцепторной примеси, захватившие соседний электрон, образуют нескомпенсированный отрицательный заряд ионов в приграничной области. Аналогично происходит диффузионное перемещение электронов из n-области в p-область, приводящее к то- му же эффекту. 9
Рис. 1.1. Р-n-структура в равновесном состоянии В результате на границе, разделяющей n-область и p-область, образуется узкий, в доли микрона, приграничный слой l, одна сторона которого заряжена отрицательно (p-область), а другая – положительно (n-область). Разность потенциалов, образованную приграничными зарядами, называют контактной разностью потенциалов UК (рис. 1.1) или потенциальным барьером, преодолеть который носители не в состоянии. Дырки, подошедшие к границе со стороны p-области, отталкиваются назад положительным зарядом, а электроны, подошедшие из n-области, – отрицательным зарядом. Контактной разностью потенциалов UК соответствует электрическое поле напряженностью ЕК. Таким образом, образуется p-n-переход шириной l, представляющий собой слой полупроводника с пониженным содержанием носителей – так называемый обедненный слой, который имеет относительно высокое электрическое сопротивление RК. Свойства p-n-структуры изменяются, если к ней приложить внешнее напряжение Uпр. Если внешнее напряжение противоположно по знаку контактной разности потенциалов и напряженность внешнего поля Епр противоположна ЕК (рис. 1.2), то дырки p-области, отталкиваясь от приложенного положительного потенциала внешнего источника, приближаются к границе между областями, компенсируют заряд части отрицательных ионов и сужают ширину р-n-перехода со стороны p-области. 10