Классическая электродинамика. Электромагнитные волны. Четырехмерная электродинамика
Покупка
Основная коллекция
Тематика:
Электричество и магнетизм. Физика плазмы
Издательство:
Инфра-Инженерия
Автор:
Яковлев Валериан Иванович
Год издания: 2023
Кол-во страниц: 484
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Бакалавриат
ISBN: 978-5-9729-1301-5
Артикул: 814801.01.99
Рассмотрены вопросы возникновения и распространения электромагнитных волн как в свободном пространстве, так и при наличии простейших ограничивающих поверхностей. Приводятся интерференция и дифракция электромагнитной волны, а также прохождение волны через материальную среду и происхождение рассеянной волны. Содержится релятивистское описание электродинамики и излучение релятивистских зарядов. Для студентов технических специальностей с углублённым изучением физики и математики, а также инженерно-технических работников.
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Бакалавриат
- 01.03.01: Математика
- 03.03.01: Прикладные математика и физика
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
Â. È. ßêîâëåâ ÊËÀÑÑÈ×ÅÑÊÀß ÝËÅÊÒÐÎÄÈÍÀÌÈÊÀ ÝËÅÊÒÐÎÌÀÃÍÈÒÍÛÅ ÂÎËÍÛ. ×ÅÒÛÐÅÕÌÅÐÍÀß ÝËÅÊÒÐÎÄÈÍÀÌÈÊÀ Ó÷åáíîå ïîñîáèå Èçäàíèå âòîðîå, èñïðàâëåííîå è äîïîëíåííîå -2023
537+538 22.313 - – 2-– -– ISBN 978-5-9729-1301-5 -. 537+538 22.313 ISBN 978-5-9729-1301-5 2023 - -
Оглавление Предисловие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Глава 7. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ . . . . . . . 11 7.1. Свободное электромагнитное поле. Волновое уравнение . . . . . . . . . . . . . . . . . . . . . . 11 7.2. Плоские волны. Основные соотношения . . . . . . . . . . 13 7.3. Пример плоской волны . . . . . . . . . . . . . . . . . . . . 16 7.4. Уравнения Максвелла для монохроматических процессов 20 7.5. Монохроматическая плоская волна: поля, волновой вектор, фазовая скорость . . . . . . . . . . . . . . . . . . . . . . . . 23 7.6. Монохроматическая плоская волна: поляризация . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.7. Отражение и преломление электромагнитной волны на границе раздела двух сред . . . . . . . . . . . . . . . . . . 31 7.8. Формулы Френеля . . . . . . . . . . . . . . . . . . . . . . . 34 7.9. Характерные особенности процесса отражения-преломления . . . . . . . . . . . . . . . . . . . . 37 7.10. Просветление оптики. О диэлектрических зеркалах . . . . . . . . . . . . . . . . . 42 7.11. Предварительно о монохроматической сферической волне 49 7.12. Задачи к главе 7 . . . . . . . . . . . . . . . . . . . . . . . . 51 Глава 8. ФУРЬЕ-РАЗЛОЖЕНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.1. Формулы преобразования Фурье . . . . . . . . . . . . . . . 54 8.2. Некоторые характерные случаи фурье-преобразования . 58
Оглавление 8.3. Соотношение неопределённости . . . . . . . . . . . . . . . 63 8.4. О физическом содержании соотношения неопределённости 72 8.5. Спектр случайного процесса . . . . . . . . . . . . . . . . . 75 8.6. Преобразования Фурье для функций четырёх переменных. Уравнения Максвелла в фурье-представлении . . . . 79 8.7. Задачи к главе 8 . . . . . . . . . . . . . . . . . . . . . . . . 86 Глава 9. ДИСПЕРСИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН 89 9.1. Краткий обзор электромагнитных свойств различных сред и их механизмов дисперсии . . . . . . . . . . . . . . . . . . 90 9.2. Классическая электронная теория дисперсии . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.3. Дисперсия и волновой пакет . . . . . . . . . . . . . . . . . 97 9.4. Метод стационарной фазы . . . . . . . . . . . . . . . . . . 107 9.5. О затухании и усилении электромагнитной волны в среде 110 9.6. Задачи к главе 9 . . . . . . . . . . . . . . . . . . . . . . . . 114 Глава 10. СТОЯЧИЕ ВОЛНЫ. РЕЗОНАТОРЫ. ВОЛНОВОДЫ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.1. Стоячие волны . . . . . . . . . . . . . . . . . . . . . . . . . 117 10.2. Стоячие волны при отражении от стенки конечной проводимости . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.3. Два примера электромагнитных волн в ограниченных областях . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.4. Резонаторы . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.5. Вынужденные колебания полей в щелевом резонаторе с потерями . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.6. Волноводы . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10.7. Волновод с прямоугольным поперечным сечением . . . . 140 10.8. ТЕМ-волны . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 10.9. Задачи к главе 10 . . . . . . . . . . . . . . . . . . . . . . . 148 Глава 11. ГЕОМЕТРИЧЕСКАЯ ОПТИКА . . . . . . . . . 152 11.1. Вводные замечания . . . . . . . . . . . . . . . . . . . . . . 152 11.2. Уравнение эйконала . . . . . . . . . . . . . . . . . . . . . . 154 11.3. Пример прохождения волны в!неоднородное полупространство . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 11.4. Второе приближение геометрической оптики для конкретного примера . . . . . . . . . . . . . . . . . . . . . . . 161
Оглавление 5 11.5. Световые лучи . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.6. Примеры применения уравнения луча . . . . . . . . . . . 168 11.7. Принцип Ферма . . . . . . . . . . . . . . . . . . . . . . . . 172 11.8. Гомоцентричность и астигматизм оптического пучка. Фокальные линии . . . . . . . . . . . . . . . . . . . . . . . . . 175 11.9. Мнимое изображение, создаваемое тонкой призмой . . . . 180 11.10. Преломление луча на сферической поверхности. Параксиальное приближение . . . . . . . . . . . . . . . . . . . . . 183 11.11. О критерии параксиальности . . . . . . . . . . . . . . . . . 190 11.12. Центрированные оптические системы . . . . . . . . . . . . 195 11.13. Тонкая линза . . . . . . . . . . . . . . . . . . . . . . . . . . 199 11.14. Кардинальные элементы оптической системы . . . . . . . 202 11.15. Оптическая система глаза . . . . . . . . . . . . . . . . . . 208 11.16. Оптические инструменты, вооружающие глаз . . . . . . . 211 Глава 12. ИНТЕРФЕРЕНЦИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 12.1. О природе интерференции . . . . . . . . . . . . . . . . . . 217 12.2. Интерференция монохроматического света . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 12.3. Первый шаг в сторону от монохроматической идеализации227 12.4. Квазимонохроматичность и когерентность . . . . . . . . . 229 12.5. Опыт Юнга. Качественное рассмотрение. Продольный размер когерентности . . . . . . . . . . . . . . . . . . . . . 234 12.6. Опыт Юнга. Количественный анализ . . . . . . . . . . . . 237 12.7. Влияние размеров источника на интерференционные явления. Поперечный размер когерентности . . . . . . . . . 240 12.8. Корреляционная функция стационарного случайного волнового поля и её роль в явлении интерференции . . . . . 246 12.9. Апертура интерференции и условие применимости протяжённого источника . . . . . . . . . . . . . . . . . . . . . 253 12.10. Интерференция на тонкой плёнке. Локализация интерференционных полос . . . . . . . . . . . . . . . . . . . . . . 255 12.11. Задачи к главе 12 . . . . . . . . . . . . . . . . . . . . . . . 267 Глава 13. ДИФРАКЦИЯ . . . . . . . . . . . . . . . . . . . . 273 13.1. Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 13.2. Математическая постановка задачи дифракции и приближённые граничные условия Кирхгофа . . . . . . . . . 275
Оглавление 13.3. Решение задачи дифракции методом разложения на плоские волны . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 13.4. Принцип Гюйгенса-Френеля. Интеграл Кирхгофа . . . . . . . . . . . . . . . . . . . . . . 282 13.5. Зоны Френеля. Зонная пластинка . . . . . . . . . . . . . . 290 13.6. Вывод интеграла Кирхгофа . . . . . . . . . . . . . . . . . 295 13.7. Интеграл Кирхгофа для цилиндрических волн . . . . . . . . . . . . . . . . . . . 301 13.8. Приближения Френеля и Фраунгофера . . . . . . . . . . . 303 13.9. Примеры дифракционных картин Фраунгофера . . . . . . 307 13.10. Пример дифракционной картины Френеля . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 13.11. Дифракционные решётки . . . . . . . . . . . . . . . . . . . 319 13.12. Дифракционная решётка как спектральный прибор . . . 327 13.13. Интерферометр Фабри-Перо . . . . . . . . . . . . . . . . . 329 13.14. Задачи к главе 13 . . . . . . . . . . . . . . . . . . . . . . . 335 Глава 14. ИЗЛУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН 339 14.1. Волновое уравнение для скалярного и векторного потенциалов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 14.2. Запаздывающие потенциалы . . . . . . . . . . . . . . . . . 340 14.3. Мультипольное разложение для запаздывающих потенциалов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 14.4. Примеры электромагнитных полей от гармонических источников . . . . . . . . . . . . . . . . 348 14.5. Дипольное излучение . . . . . . . . . . . . . . . . . . . . . 352 14.6. Магнитно-дипольное и квадрупольное излучения . . . . . 358 14.7. Излучение антенны . . . . . . . . . . . . . . . . . . . . . . 362 14.8. Интерференционный способ управления диаграммой направленности антенн . . . . . . . . . . . . . . . . . . . . . . 366 14.9. О физическом механизме возникновения показателя преломления электромагнитных волн . . . . . . . . . . . . . . 375 14.10. Рассеяние электромагнитных волн . . . . . . . . . . . . . 379 14.11. Рассеяние свободными зарядами . . . . . . . . . . . . . . . 381 14.12. Задачи к главе 14 . . . . . . . . . . . . . . . . . . . . . . . 386
Оглавление 7 Глава 15. СФЕРИЧЕСКИЕ ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 15.1. Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 15.2. Электромагнитные мультипольные поля (осесимметричный случай) . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 15.3. Сферическая стоячая волна. Сферический резонатор . . . . . . . . . . . . . . . . . . . . 398 15.4. Замкнутая задача излучения антенны . . . . . . . . . . . 400 Глава 16. СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ И ЭЛЕКТРОДИНАМИКА . . . . . . . . . . . . . 408 16.1. Постулаты Эйнштейна. Инвариантность интервала. Преобразование Лоренца . . . . . . . . . . . . . . . . . . . 409 16.2. Четырёхмерное пространство Минковского. Четырёхмерные тензоры . . . . . . . . . . . . . . . . . . . . . . . . . . 411 16.3. Метрический тензор . . . . . . . . . . . . . . . . . . . . . . 417 16.4. Ковариантность уравнений электродинамики . . . . . . . 419 16.5. Поле равномерно движущегося заряда . . . . . . . . . . . 421 16.6. Тензор электромагнитного поля. Ковариантный вид уравнений Максвелла . . . . . . . . . . . . . . . . . . . . . . . . 422 16.7. Ковариантная форма уравнения движения материальной точки . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 16.8. Преобразование Лоренца для поля . . . . . . . . . . . . . 427 16.9. Инварианты поля . . . . . . . . . . . . . . . . . . . . . . . 429 16.10. Ковариантность выражения для силы Лоренца и законов сохранения . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 16.11. Четырёхмерный волновой вектор. Эффект Доплера . . . 436 Глава 17. ИЗЛУЧЕНИЕ РЕЛЯТИВИСТСКИХ ЗАРЯДОВ439 17.1. Потенциалы Лиенара-Вихерта . . . . . . . . . . . . . . . . 439 17.2. Поля движущегося заряда . . . . . . . . . . . . . . . . . . 442 17.3. Четырёхвектор энергии-импульса излучения релятивистской частицы . . . . . . . . . . . . . . . . . . . . . . . . . . 448 17.4. Угловое распределение излучения . . . . . . . . . . . . . . 453 17.5. Физический смысл мощности излучения . . . . . . . . . . 456 17.6. Торможение излучением . . . . . . . . . . . . . . . . . . . 458 17.7. Сила торможения и баланс энергии-импульса при излучении . . . . . . . . . . . . . . 464
Оглавление 17.8. Сила торможения излучением для заряда, движущегося в заданном электромагнитном поле . . . . . . . . . . . . . . . . . . . . 468 17.9. Излучение заряда, движущегося в однородном электрическом поле при v∥E . . . . . . . . . . . . . . . . . . . . . 470 17.10. Синхротронное излучение . . . . . . . . . . . . . . . . . . . 474 Библиографический список . . . . . . . . . . . . . . . . . . . 481
Предисловие Вторая часть книги представляет собой переработанный вариант частей 2 и 3 учебного пособия по курсу электродинамики, выпущенных Редакционно-издательским центром Новосибирского государственного университета в 2009г. (часть 2) и 2014г. (часть 3) для студентов физического факультета. Книга посвящена волновым процессам, включая элементы волновой оптики, и основную её часть составляет последовательное рассмотрение «конструкции» электромагнитных волн, законов их распространения в пустоте и в материальных средах с простейшими свойствами, включая приближение геометрической оптики. Рассматриваются интерференция, дифракция, излучение и рассеяние электромагнитных волн. Основная часть этой книги (главы 7—14) написана как пособие для первоначального изучения основ теории волновых процессов в электродинамике и опирается на полную систему уравнений Максвелла с токами смещения. Для описания монохроматических процессов используется комплексное представление физических величин. Требуемые для изучения данного материала математические знания не выходят за пределы стандартного курса математического анализа и простейших дифференциальных уравнений. Решения для всех встречающихся дифференциальных уравнений в частных производных получаются по ходу изложения материала. Считая, что понимание теории необходимо и для экспериментальной работы, автор стремился сделать изложение по возможности доступным, следя за последовательностью и отсутствием логических пробелов в цепочках рассуждений. Этой же цели служит использование специальных необщепринятых обозначений типа ˆf, ˆE (со «шляпками») для выделения комплексных амплитуд соответствующих физических величин. Все главы этой основной части книги (кроме главы по геометрической оптике) снабжены небольшим количеством задач (с соответствующими подсказками) для самостоятельной работы.
Предисловие Последние три главы (главы 15—17) содержат более специальный материал, требующий для освоения большую предварительную подготовку. При первом чтении эти главы можно опустить и обратиться к ним после полноценного освоения основной части курса (или при возникновении практической необходимости). Первая из названных глав возникла из желания привычные решения уравнений Максвелла в виде монохроматических плоских волн дополнить осесимметричными векторными мультиполями, задаваемыми в сферических координатах. Тем самым класс решаемых волновых задач расширяется за счёт включения областей со сферическими границами. Это позволило продемонстрировать формулировку замкнутой задачи излучения для простейшей сферической антенны и тем облегчить изложение вопроса об излучении антенны, подчеркнув приближённость обычно применяемого подхода. Это же дало возможность рассмотреть сферический резонатор и изучить его осесимметричную моду. В последних двух главах конспективное изложение специальной теории относительности Эйнштейна завершается релятивистским обобщением электродинамики. Особое внимание уделено излучению релятивистских частиц. Исключив неявное отождествление мощности излучения и скорости потери энергии частицы за счёт излучения, встречающееся в учебной литературе, здесь удалось существенно упростить описание процесса, элементарно построив баланс энергии-импульса при излучении частицы. Независимыми компонентами этого баланса являются мощность излучения, скорость потери энергии частицей и скорость передачи энергии буферному полю. При этом в процессе четырёхмерного обобщения баланса попутно получается наглядный вывод формулы для силы торможения излучением релятивистского заряда. Для данного издания определяющую роль сыграла инициатива проф. В. Г. Сербо. В процессе написания книги автору сильно помогла моральная поддержка со стороны руководства как ИТПМ им. С. А. Христиановича СО РАН в лице акад. В. М. Фомина и проф. А. М. Оришича, так и кафедры общей физики НГУ (проф. А. Г Погосов). Критические замечания и пожелания по книге, высказанные проф. Г. Л. Коткиным, способствовали устранению замеченных шероховатостей изложения. Всем им я искренне признателен. Благодарю аспиранта физического факультета НГУ Р. Галева за помощь в создании иллюстраций.