Как учится машина: революция в области нейронных сетей и глубокого обучения
Покупка
Издательство:
Альпина ПРО
Автор:
Лекун Ян
Год издания: 2021
Кол-во страниц: 335
Дополнительно
Вид издания:
Научно-популярная литература
Уровень образования:
ВО - Бакалавриат
ISBN: 978-5-907394-92-6
Артикул: 813783.01.99
Мы живем во время революции, еще 50 лет назад казавшейся невероятной, — революции в области умных машин, которые теперь обучаются самостоятельно, вместо того чтобы просто выполнять запрограммированные команды. И возможности таких машин огромны: распознавание изображений, лиц и голосов, переводы на сотни языков, беспилотное управление автомобилями, обнаружение опухолей на медицинских снимках и многое другое.
Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы.
Сегодня искусственный интеллект действительно меняет все наше общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Бакалавриат
- 09.03.01: Информатика и вычислительная техника
- 09.03.02: Информационные системы и технологии
- 09.03.03: Прикладная информатика
- 09.03.04: Программная инженерия
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
КаК учится машина
Quand la machine apprend LA REVOLUTION DES NEURONES ARTIFICIELS ET DE L”APPRENTISSAGE PROFOND ODILE JACOB YANN LE CUN avec la collaboration de Caroline Brizard
Перевод с французского КаК учится машина РЕВОЛЮЦИЯ В ОБЛАСТИ НЕЙРОННЫХ СЕТЕЙ И ГЛУБОКОГО ОБУЧЕНИЯ ЯН ЛЕКУН при участии Каролины Бризар МОСКВА 2021
ISBN 978-5-907394-92-6 (рус.) ISBN 978-2-7381-4933-6 (фр.) УДК 004.8 ББК 32.813 Л43 Переводчик Е. Арсенова Редактор В. Скворцов Научный редактор М. Плец Лекун Я. Как учится машина : Революция в области нейронных сетей и глубокого обучения / Ян Лекун. — Пер. с фр. — М. : Альпина ПРО, 2021. — 335 с. ISBN 978-5-907394-92-6 Мы живем во время революции, еще 50 лет назад казавшейся невероятной, — революции в области умных машин, которые теперь обучаются самостоятельно, вместо того чтобы просто выполнять запрограммированные команды. И возможности таких машин огромны: распознавание изображений, лиц и голосов, переводы на сотни языков, беспилотное управление автомобилями, обнаружение опухолей на медицинских снимках и многое другое. Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы. Сегодня искусственный интеллект действительно меняет общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью. УДК 004.8 ББК 32.813 Л43 Все права защищены. Никакая часть этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети интернет и в корпоративных сетях, а также запись в память ЭВМ для частного или пуб личного использования, без письменного разрешения владельца авторских прав. По вопросу организации доступа к электронной библиотеке издательства обращайтесь по адресу mylib@alpina.ru © Odile Jacob, octobre 2019 © ООО «Альпина ПРО», 2021
Оглавление Введение ........................................................................................................................................................ 7 Глава 1 Революция в искусственном интеллекте ...................................................... 11 Глава 2 Краткая история искусственного интеллекта… и моего карьерного пути ........................................................................................... 23 Глава 3 Простые обучающие машины ............................................................................... 71 Глава 4 Обучение путем минимизации, теория обучения .............................. 105 Глава 5 Глубокие сети и обратное распространение ........................................... 145 Глава 6 Сверточные сети, столпы ИИ .............................................................................. 173 Глава 7 Внутренности машины, или глубокое обучение сегодня .............. 201 Глава 8 Моя работа в компании Facebook ..................................................................... 239 Глава 9 Что ждет нас завтра? Перспективы и проблемы искусственного интеллекта ................................................................................. 263 Глава 10 Искусственный интеллект и человечество ............................................... 299 Послесловие ............................................................................................................................................ 329 Благодарности ...................................................................................................................................... 333
Введение «Открой дверь модульного отсека, Хэл!» В фильме «2001 год: Космическая одиссея» HAL 9000, сверхразумный компьютер, управляющий работой космического корабля, отказывается открыть дверь модульного отсека астронавту Дейву Боумену. В этой драматической сцене — вся трагедия искусственного интеллекта. Мыслящая машина оборачивается против человека, который ее сам же разработал. Что это: фантазия или обоснованные опасения? Стоит ли тревожиться о том, что однажды нашим миром будут управлять терминаторы — искусственные гуманоиды с почти неограниченными возможностями и темными замыслами? Этот вопрос люди задают все чаще и чаще сейчас, когда мы переживаем неслыханную революцию в интеллектуальных технологиях, которую никто не мог вообразить себе еще полвека назад. Искусственный интеллект, изучению которого я посвятил много лет, меняет все наше общество. Я решил написать эту книгу, чтобы объяснить определенный набор методов и приемов в этой области, не скрывая всей ее сложности. Понять это не так просто, как научиться играть в шашки, но я думаю, что это необходимо для формирования аргументированного мнения по вопросам, связанным с искусственным интеллектом. Наше медиапространство пестрит такими терминами как «глубокое обучение», «машинное обучение» или «нейронные сети»… Я хочу, шаг за шагом, пролить свет на научный подход, который работает на стыке вычислительной техники и нейробиологии, не прибегая при этом к каким-либо метафорам. Во время нашего погружения в основы работы вычислительных машин я буду использовать два способа изложения информации. Первый из них — традиционный: я рассказываю, описываю и анализирую. Время
КАК УЧИТСЯ МАШИНА от времени для тех, кому интересно, я буду приводить более сложные примеры из математики и компьютерных наук. Искусственный интеллект (ИИ) позволяет машине распознавать изображения, транскрибировать голос с одного языка на другой, переводить тексты, автоматизировать управление автомобилем или контролировать производственные процессы. Его широкое распространение в последние годы связано с методом, именуемым глубоким обучением, которое позволяет не просто программировать машину для выполнения определенной задачи, а обучать ее решению более широкого круга сходных задач. Глубокое обучение применяется к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. Наш мозг состоит из 86 млрд нейронов, нервных клеток, связанных друг с другом. Искусственные нейронные сети также состоят из множества единиц, математических функций, подобных очень упрощенным нейронам. В мозгу обучение изменяет связи между нейронами; то же самое происходит и с искусственными нейронными сетями. Поскольку эти единицы часто организованы в несколько слоев, мы говорим о «сетях» и «глубоком» обучении. Роль искусственных нейронов состоит в том, чтобы вычислить взвешенную сумму входных сигналов и создать выходной сигнал, если эта сумма превышает определенный порог. Но искусственный нейрон — это не больше и не меньше, чем математическая функция, рассчитанная компьютерной программой. Однако мы не случайно применяем к искусственным сетям те же термины, что и к реальным нейронам, — ведь именно открытия в области нейробиологии послужили стимулом исследованиям в области ИИ. В этой книге я также хочу проследить свой интеллектуальный путь в рамках этого необычного научного приключения. Мое имя по-прежнему связано с так называемыми «сверточными» нейронными сетями, которые подняли распознавание объектов компьютером на небывалую высоту. Вдохновленные структурой и функцией зрительной коры головного мозга млекопитающих, они могут эффективно обрабатывать изображения, видео, звук, голос, текст и другие типы сигналов. В чем состоит деятельность исследователя? Откуда берутся его идеи? Что касается меня, то я уделяю много внимания интуитивным догадкам. Дальше наступает очередь математики. Я знаю, что другие ученые
ВВЕДЕНИЕ 9 действуют диаметрально противоположным образом. Я проецирую в свою голову пограничные случаи, которые Эйнштейн называл «мысленными экспериментами», благодаря которым вы сначала представляете ситуацию, а затем пытаетесь рассмотреть ее следствия для лучшего понимания проблемы. Моя интуиция подпитывается чтением книг. Я просто пожираю книги. Я исследую работы тех, кто был до меня. Вы никогда ничего не создадите в одиночку. Идеи живут, дремлют, и они возникают в чьей-то голове, потому что пришло время. Так рождаются исследования. Они продвигаются неравномерно, то прыжками, то шажками, а порой — даже пятясь. Но деятельность эта всегда коллективна. Образ одинокого исследователя, делающего в своей лаборатории мировое открытия, — не более, чем романтическая фантастика. Путь разработки глубокого обучения не был простым. Приходилось бороться со скептиками всех мастей. Сторонники «классического» искусственного интеллекта, основанного исключительно на логике и рукописных программах, пророчили нам провал. Люди, добившиеся успеха в традиционном машинном обучении, показывали на нас пальцами, хотя глубокое обучение, над которым мы работали, и было по существу набором определенных методов в более широкой области машинного обучения. Однако тот тип машинного обучения, который позволял машине решать задачу путем сравнения конкретных примеров внутри массива данных, а не прямым исполнением написанной программы, тоже имел свои пределы. Мы пытались их преодолеть. Средством для этого послужили глубокие нейронные сети. Они были очень эффективными, но при этом сложными в математическом анализе и в реализации. Поэтому мы прослыли чуть ли не алхимиками… Сторонники традиционного машинного обучения перестали высмеивать нейронные сети в 2010 г., когда последние наконец продемонстрировали свою эффективность. Лично я никогда не сомневался в успехе. Я всегда был убежден, что человеческий интеллект настолько сложен, что для того, чтобы его скопировать, нужно стремиться построить самоорганизующуюся систему, способную учиться самостоятельно, через опыт. Сегодня эта форма искусственного интеллекта так и осталась наиболее перспективной, благодаря доступности больших баз данных и прогрессу в разработке оборудования, например графических процессоров, намного увеличивших вычислительную мощность компьютеров.
КАК УЧИТСЯ МАШИНА По окончании учебы я планировал провести несколько лет в Северной Америке. И я все еще там! После некоторых жизненных перипетий я попал в компанию Facebook, владеющую сайтом с 2 млрд активных пользователей, чтобы вести фундаментальные исследования в области ИИ. Это — тоже часть моей публичной биографии. Я не хочу скрывать ничего из того, что происходит в компании Марка Цукерберга, которой в 2018 г. были предъявлены серьезные обвинения, и чье безграничное расширение вызывает опасение. В любом случае — я сторонник открытости. В марте 2019 г. я был удостоен премии Тьюринга за 2018 г. от Ассоциации вычислительной техники — своего рода Нобелевской премии в компьютерной области. Я разделил эту награду с двумя другими специалистами по глубокому обучению, Йошуа Бенджио и Джеффри Хинтоном, моими партнерами, с которыми мы много спорили, но всегда сходились в главном. Я многим обязан всем этим встречам, месту, которое я со временем занял в сообществе безумных наследников кибернетики 1950-х гг., не устававшим задавать друг другу «детские» на вид, но глубокие по сути вопросы, вроде: «Как получается, что нейроны, очень простые объекты, соединяясь друг с другом, производят новое свой ство, которое называется интеллектом?» Теперь эта научная авантюра порождает новые важные вопросы. Отличается ли работа машины, которая распознает автомобиль посредством выделения таких элементов, как колеса, лобовое стекло и т. д. от работы нашей зрительной коры при идентификации той же самой машины? Что делать с наблюдаемым сходством между работой машины и мозгом человека или животного? Область исследования безгранична. Посмотрим правде в глаза: машины, какими бы мощными и сложными они ни были, по-прежнему очень узкоспециализированы. Они учатся менее эффективно, чем люди и животные. По сей день у них нет ни здравого смысла, ни совести. По крайней мере, пока! Несомненно, они превосходят людей в определенных задачах: например, побеждают их в го и в шахматах; они переводят сотни языков, они узнают растения или насекомых, они обнаруживают опухоли на медицинских изображениях. Но человеческий мозг сохраняет значительное преимущество перед машинами в том, что он более универсален и гибок. Смогут ли машины догнать нас, и если да — то как скоро?