Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Математический анализ. Часть I

Покупка
Артикул: 789806.01.99
Университетский учебник для студентов физико-математических специальностей. Может быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений.
Зорич, В. А. Математический анализ. Часть I : учебник / В. А. Зорич. - 11-е изд., испр. - Москва : МЦНМО, 2021. - 564 с. - ISBN 978-5-4439-3304-7. - Текст : электронный. - URL: https://znanium.com/catalog/product/1900074 (дата обращения: 22.11.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов
В. А. Зорич

Математический анализ

Часть I

Электронное издание

Издательство МЦНМО
Москва, 2021

УДК 517
ББК 22.16
З86

Зорич В. А.
Математический анализ. Часть I
Электронное издание
М.: МЦНМО, 2021
xii+564 с.
ISBN 978-5-4439-3304-7

Университетский учебник для студентов физико-математических специальностей. Может
быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а
также специалистам в области математики и ее приложений.

Подготовлено на основе книги:
Зорич В. А. Математический анализ. Часть I. — Изд. 11-е, испр. — М.: МЦНМО,
2021. — xii+564 с. Библ.: 54 назв. Илл.: 65. ISBN 978-5-4439-1676-7.

Издательство Московского центра
непрерывного математического образования
119002, Москва, Большой Власьевский пер., 11.
Тел. (495) 241-74-83
www.mccme.ru

ISBN ----
© В. А. Зорич, 2001—2021.
© Издательство МЦНМО, 2021.

Оглавление

Из предисловия к первому изданию . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
viii
Из предисловия ко второму изданию . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi
Предисловие к седьмому изданию . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi

Глава I. Некоторые общематематические понятия и обозначения

§ 1. Логическая символика . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

1. Связки и скобки (1). 2. Замечания о доказательствах (2). 3. Некоторые специальные обозначения (3). 4. Заключительные замечания (3).
Упражнения (4)

§ 2. Множества и элементарные операции над множествами . . . . . . . . .
4

1. Понятие множества (4). 2. Отношение включения (6). 3. Простейшие операции над множествами (7). Упражнения (10)

§ 3. Функция . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10

1. Понятие функции (отображения) (10). 2. Простейшая классификация отображений (14). 3. Композиция функций и взаимно обратные
отображения (16). 4. Функция как отношение. График функции (18).
Упражнения (21)

§ 4. Некоторые дополнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23

1. Мощность множества (кардинальные числа) (23). 2. Об аксиоматике теории множеств (25). 3. Замечания о структуре математических
высказываний и записи их на языке теории множеств (27). Упражнения (29)

Глава II. Действительные (вещественные) числа

§ 1. Аксиоматика и некоторые общие свойства множества действительных чисел . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32

1. Определение множества действительных чисел (32). 2. Некоторые
общие алгебраические свойства действительных чисел (36). 3. Аксиома полноты и существование верхней (нижней) грани числового множества (39)

§ 2. Важнейшие классы действительных чисел и вычислительные аспекты операций с действительными числами. . . . . . . . . . . . . . . . . . . . . . . . . .
41

1. Натуральные числа и принцип математической индукции (41). 2. Рациональные и иррациональные числа (44). 3. Принцип Архимеда (48).

iv
4. Геометрическая интерпретация множества действительных чисел и
вычислительные аспекты операций с действительными числами (49).
Задачи и упражнения (61)
§ 3. Основные леммы, связанные с полнотой множества действительных чисел. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
1. Лемма о вложенных отрезках (принцип Коши—Кантора) (65).
2. Лемма о конечном покрытии (принцип Бореля—Лебега) (66). 3.
Лемма о предельной точке (принцип Больцано—Вейерштрасса) (66).
Задачи и упражнения (67)
§ 4. Счетные и несчетные множества . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
1. Счетные множества (68). 2. Мощность континуума (70). Задачи и
упражнения (71)

Глава III. Предел

§ 1. Предел последовательности. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
1. Определения и примеры (72). 2. Свойства предела последовательности (74). 3. Вопросы существования предела последовательности (78).
4. Начальные сведения о рядах (87). Задачи и упражнения (96).
§ 2. Предел функции. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
98
1. Определения и примеры (98). 2. Свойства предела функции (102).
3. Общее определение предела функции (предел по базе) (117). 4. Вопросы существования предела функции (121). Задачи и упражнения
(135).

Глава IV. Непрерывные функции

§ 1. Основные определения и примеры . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
138
1. Непрерывность функции в точке (138). 2. Точки разрыва (142).
§ 2. Свойства непрерывных функций . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
145
1. Локальные свойства (145). 2. Глобальные свойства непрерывных
функций (147). Задачи и упражнения (155).

Глава V. Дифференциальное исчисление

§ 1. Дифференцируемая функция . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
160
1. Задача и наводящие соображения (160). 2. Функция, дифференцируемая в точке (165). 3. Касательная; геометрический смысл производной и дифференциала (167). 4. Роль системы координат (170). 5.
Некоторые примеры (172). Задачи и упражнения (177).
§ 2. Основные правила дифференцирования. . . . . . . . . . . . . . . . . . . . . . . . . . .
178
1. Дифференцирование и арифметические операции (178). 2. Дифференцирование композиции функций (181). 3. Дифференцирование обратной функции (184). 4. Таблица производных основных элементарных функций (188). 5. Дифференцирование простейшей неявно заданной функции (189). 6. Производные высших порядков (193). Задачи и
упражнения (197).

v

§ 3. Основные теоремы дифференциального исчисления . . . . . . . . . . . . . .
198

1. Лемма Ферма и теорема Ролля (198). 2. Теоремы Лагранжа и Коши
о конечном приращении (200). 3. Формула Тейлора (203). Задачи и
упражнения (214).

§ 4. Исследование функций методами дифференциального исчисления . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
217

1. Условия монотонности функции (217). 2. Условия внутреннего экстремума функции (218). 3. Условия выпуклости функции (224). 4. Правило Лопиталя (230). 5. Построение графика функции (232). Задачи и
упражнения (240).

§ 5. Комплексные числа и взаимосвязь элементарных функций . . . . . . .
244

1. Комплексные числа (244). 2. Сходимость в и ряды с комплексными членами (247). 3. Формула Эйлера и взаимосвязь элементарных
функций (251). 4. Представление функции степенным рядом, аналитичность (255). 5. Алгебраическая замкнутость поля комплексных
чисел (259). Задачи и упражнения (265).

§ 6. Некоторые примеры использования дифференциального исчисления в задачах естествознания . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
267

1. Движение тела переменной массы (267). 2. Барометрическая формула (269). 3. Радиоактивный распад, цепная реакция и атомный котел
(270). 4. Падение тел в атмосфере (273). 5. Еще раз о числе e и функции exp x (274). 6. Колебания (277). Задачи и упражнения (280).

§ 7. Первообразная . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
284

1. Первообразная и неопределенный интеграл (284). 2. Основные общие приемы отыскания первообразной (286). 3. Первообразные рациональных функций (291). 4. Первообразные вида
R(cos x, sin x) dx
(295). 5. Первообразные вида
R(x, y(x)) dx (297). Задачи и упражнения (300).

Глава VI. Интеграл

§ 1. Определение интеграла и описание множества интегрируемых
функций . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
305

1. Задача и наводящие соображения (305). 2. Определение интеграла
Римана (306). 3. Множество интегрируемых функций (308). Задачи и
упражнения (320).

§ 2. Линейность, аддитивность и монотонность интеграла . . . . . . . . . . . .
321

1. Интеграл как линейная функция на пространстве [a, b] (321). 2.
Интеграл как аддитивная функция отрезка интегрирования (322). 3.
Оценка интеграла, монотонность интеграла, теоремы о среднем (325).
Задачи и упражнения (332).

§ 3. Интеграл и производная . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
333

1. Интеграл и первообразная (333). 2. Формула Ньютона—Лейбница
(335). 3. Интегрирование по частям в определенном интеграле и фор
vi
мула Тейлора (336). 4. Замена переменной в интеграле (338). 5. Некоторые примеры (340). Задачи и упражнения (344).
§ 4. Некоторые приложения интеграла. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
347
1. Аддитивная функция ориентированного промежутка и интеграл
(347). 2. Длина пути (349). 3. Площадь криволинейной трапеции (355).
4. Объем тела вращения (356). 5. Работа и энергия (356). Задачи и
упражнения (362).
§ 5. Несобственный интеграл . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
363
1. Определения, примеры и основные свойства несобственных интегралов (363). 2. Исследование сходимости несобственного интеграла
(368). 3. Несобственные интегралы с несколькими особенностями
(373). Задачи и упражнения (376).

Глава VII. Функции многих переменных, их предел и непрерывность

§ 1. Пространство m и важнейшие классы его подмножеств . . . . . . . . .
378
1. Множество m и расстояние в нем (378). 2. Открытые и замкнутые
множества в m (380). 3. Компакты в m (382). Задачи и упражнения
(384).
§ 2. Предел и непрерывность функции многих переменных . . . . . . . . . . .
384
1. Предел функции (384). 2. Непрерывность функции многих переменных и свойства непрерывных функций (389). Задачи и упражнения
(394).

Глава VIII. Дифференциальное исчисление функций многих переменных

§ 1. Векторная структура в m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
395
1. m как векторное пространство (395). 2. Линейные отображения
L: m → n (396). 3. Норма в m (397). 4. Евклидова структура в m

(398).
§ 2. Дифференциал функции многих переменных . . . . . . . . . . . . . . . . . . . . .
400
1. Дифференцируемость и дифференциал функции в точке (400). 2.
Дифференциал и частные производные вещественнозначной функции
(401). 3. Координатное представление дифференциала отображения.
Матрица Якоби (403). 4. Непрерывность, частные производные и дифференцируемость функции в точке (404).
§ 3. Основные законы дифференцирования. . . . . . . . . . . . . . . . . . . . . . . . . . . .
405
1. Линейность операции дифференцирования (405). 2. Дифференцирование композиции отображений (407). 3. Дифференцирование обратного отображения (412). Задачи и упражнения (414).
§ 4. Основные факты дифференциального исчисления вещественнозначных функций многих переменных . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
419
1. Теорема о среднем (419). 2. Достаточное условие дифференцируемости функции многих переменных (421). 3. Частные производные выс
vii

шего порядка (422). 4. Формула Тейлора (425). 5. Экстремумы функций многих переменных (427). 6. Некоторые геометрические образы,
связанные с функциями многих переменных (433). Задачи и упражнения (437).

§ 5. Теорема о неявной функции . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
443

1. Постановка вопроса и наводящие соображения (443). 2. Простейший вариант теоремы о неявной функции (445). 3. Переход к случаю
зависимости F(x1, …, xm, y) = 0 (449). 4. Теорема о неявной функции
(451). Задачи и упражнения (455).

§ 6. Некоторые следствия теоремы о неявной функции. . . . . . . . . . . . . . . .
459

1. Теорема об обратной функции (459). 2. Локальное приведение гладкого отображения к каноническому виду (464). 3. Зависимость функций (468). 4. Локальное разложение диффеоморфизма в композицию
простейших (469). 5. Лемма Морса (472). Задачи и упражнения (475).

§ 7. Поверхность в n и теория условного экстремума. . . . . . . . . . . . . . . . .
476

1. Поверхность размерности k в n (476). 2. Касательное пространство
(481). 3. Условный экстремум (486). Задачи и упражнения (497)

Некоторые задачи коллоквиумов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
502
Вопросы к экзамену . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
511

Дополнения

1. Математический анализ (вводная лекция для первого курса). . . . . . .
515
2. Начальные сведения о численных методах решения уравнений . . . .
523
3. Преобразование Лежандра (первое обсуждение). . . . . . . . . . . . . . . . . . . .
526
4. Интеграл Римана—Стилтьеса, дельта-функция и идея обобщенных
функций (начальные представления) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
529
5. Формула Эйлера—Маклорена. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
537
6. Теорема о неявной функции (альтернативное изложение). . . . . . . . . .
542

Литература . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
550
Предметный указатель . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
553
Указатель имен . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
563

ИСоздание Ньютоном и Лейбницем три столетия тому назад основ дифференциального и интегрального исчисления даже по нынешним масштабам
представляется крупнейшим событием в истории науки вообще и математики в особенности.
Математический анализ (в широком смысле слова) и алгебра, переплетаясь, образовали теперь ту корневую систему, на которой держится разветвленное дерево современной математики и через которую происходит
его основной живительный контакт с внематематической сферой. Именно
по этой причине основы анализа включаются как необходимый элемент даже самых скромных представлений о так называемой высшей математике,
и, вероятно, поэтому изложению основ анализа посвящено большое количество книг, адресованных различным кругам читателей.
Эта книга в первую очередь адресована математикам, желающим (как
и должно) получить полноценные в логическом отношении доказательства
фундаментальных теорем, но вместе с тем интересующимся также их внематематической жизнью.
Особенности настоящего курса сводятся в основном к следующему.
По характеру изложения. В пределах каждой большой темы изложение,
как правило, индуктивное, идущее порой от постановки задачи и наводящих
эвристических соображений по ее решению к основным понятиям и формализмам.
Подробное вначале, изложение становится все более сжатым по мере
продвижения по курсу.
Упор сделан на эффективном аппарате гладкого анализа. При изложении
теории я (в меру своего понимания) стремился выделить наиболее существенные методы и факты и избежать искушения незначительного усиления
теорем ценой значительного усложнения доказательств.
Изложение геометрично всюду, где это представлялось ценным для раскрытия существа дела.
Основной текст снабжен довольно большим количеством примеров, а
почти каждый параграф заканчивается набором задач, которые, надеюсь,
существенно дополняют даже теоретическую часть основного текста. Следуя
великолепному опыту Полиа и Сеге, я часто старался представить красивый
математический или важный прикладной результат в виде серий доступных
читателю задач.
Расположение материала диктовалось не только архитектурой математики в смысле Бурбаки, но и положением анализа как составной части единого
математического или, лучше сказать, естественно-математического образования.

ix

По содержанию. Курс издается в двух книгах (части I и II).
Настоящая первая часть содержит дифференциальное и интегральное
исчисление функций одной переменной и дифференциальное исчисление
функций многих переменных.
В дифференциальном исчислении выделена роль дифференциала как
линейного эталона для локального описания характера изменения переменной величины. Кроме многочисленных примеров использования
дифференциального исчисления для исследования функциональных зависимостей (монотонность, экстремумы), показана роль языка анализа в записи
простейших дифференциальных уравнений — математических моделей конкретных явлений и связанных с ними содержательных задач.
Рассмотрен ряд таких задач (например, движение тела переменной массы, ядерный реактор, атмосферное давление, движение в сопротивляющейся среде), решение которых приводит к важнейшим элементарным функциям. Полнее использован комплексный язык, в частности, выведена формула
Эйлера и показано единство основных элементарных функций.
Интегральное исчисление сознательно изложено по возможности на наглядном материале в рамках интеграла Римана. Для большинства приложений этого вполне хватает1. Указаны различные приложения интеграла, в
том числе приводящие к несобственному интегралу (например, работа выхода из поля тяготения и вторая космическая скорость) или к эллиптическим
функциям (движение в поле тяжести при наличии связей, маятник).
Дифференциальное исчисление функций нескольких переменных довольно геометрично. В нем, например, рассмотрены такие важные и полезные
следствия теоремы о неявной функции, как криволинейные координаты и
локальное приведение к каноническому виду гладких отображений (теорема о ранге) и функций (лемма Морса), а также теория условного экстремума.
Результаты, относящиеся к теории непрерывных функций и дифференциальному исчислению, подытожены и изложены в общем инвариантном
виде в двух главах, которые естественным образом примыкают к дифференциальному исчислению вещественнозначных функций нескольких переменных. Эти две главы открывают вторую часть курса. Вторая книга, в которой,
кроме того, изложено интегральное исчисление функций многих переменных, доведенное до общей формулы Ньютона—Лейбница—Стокса, приобретает, таким образом, определенную целостность.
Более полные сведения о второй книге мы поместим в предисловии к
ней, а здесь добавим только, что кроме уже перечисленного материала она
содержит сведения о рядах функций (степенных рядах и рядах Фурье в том

1Более «сильные» интегралы, как известно, требуют более кропотливых и выбивающихся из основного русла теоретико-множественных рассмотрений, мало что прибавляя
к эффективному аппарату анализа, который и должен быть освоен в первую очередь.

x
числе), об интегралах, зависящих от параметра (включая фундаментальное
решение, свертку и преобразование Фурье), а также об асимптотических
разложениях (они обычно мало представлены в учебной литературе).
Остановимся теперь на некоторых частных вопросах.
О введении. Вводного обзора предмета я не писал, поскольку большинство начинающих студентов уже имеют из школы первое представление о
дифференциальном и интегральном исчислении и его приложениях, а на
большее вступительный обзор вряд ли мог бы претендовать. Вместо него я
в первых двух главах довожу до определенной математической завершенности представления бывшего школьника о множестве, функции, об использовании логической символики, а также о теории действительного числа.
Этот материал относится к формальным основаниям анализа и адресован в первую очередь студенту-математику, который в какой-то момент захочет проследить логическую структуру базисных понятий и принципов, используемых в классическом анализе. Собственно математический анализ в
книге начинается с третьей главы, поэтому читатель, желающий по возможности скорее получить в руки эффективный аппарат и увидеть его приложения, при первом чтении вообще может начать с главы III, возвращаясь к
более ранним страницам в случае, если что-то ему покажется неочевидным
и вызовет вопрос, на который, надеюсь, я тоже обратил внимание и предусмотрительно дал ответ в первых главах.

О рубрикации. Материал обеих книг разбит на главы, имеющие сплошную нумерацию. Параграфы нумеруются в пределах каждой главы отдельно;
подразделения параграфа нумеруются только в пределах этого параграфа.
Теоремы, утверждения, леммы, определения и примеры для большей логической четкости выделяются, а для удобства ссылок нумеруются в пределах
каждого параграфа.

О вспомогательном материале. Несколько глав книги написаны как
естественное окаймление классического анализа. Это, с одной стороны, уже
упоминавшиеся главы I, II, посвященные его формально-математическим
основаниям, а с другой стороны, главы IX, X, XV второй части, дающие современный взгляд на теорию непрерывности, дифференциальное и интегральное исчисление, а также глава XIX, посвященная некоторым эффективным
асимптотическим методам анализа.
Вопрос о том, какая часть материала этих глав включается в лекционный
курс, зависит от контингента слушателей и решается лектором, но некоторые вводимые здесь фундаментальные понятия обычно присутствуют в
любом изложении предмета математикам.
В заключение я хотел бы поблагодарить тех, чья дружеская и квалифицированная профессиональная помощь была мне дорога и полезна при работе
над этой книгой.
Предлагаемый курс довольно тщательно и во многих аспектах согласовывался с последующими современными университетскими математическими