Research Methods for Smart Materials
Покупка
Тематика:
Химические элементы и их соединения
Год издания: 2018
Кол-во страниц: 84
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Магистратура
ISBN: 978-5-7882-2515-9
Артикул: 787076.01.99
The main research methods for study and characterization of smart materials (as objects of interest for modem advanced research activities) are discussed in this tutorial. Various characterization methods are considered- such as dynamic light scattering, nuclear magnetic resonance, atomic force microscopy. X-ray diffraction, electron microscopy, and etc. The primary target audience of this tutorial are Master's students majoring in the following areas of study: 18.04.01 "Chemical Engineering", 28.04.02 "Nanoengineering", and 22.04.01 "Materials Science and Technology".
This tutorial was developed at the Department of Physical and Colloidal Chemistry.
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Магистратура
- 18.04.01: Химическая технология
- 22.04.01: Материаловедение и технологии материалов
- 28.04.02: Наноинженерия
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
The Ministry of Science and Higher Education of the Russian Federation Kazan National Research Technological University A. Bezrukov, Yu. Galyametdinov RESEARCH METHODS FOR SMART MATERIALS Tutorial Kazan KNRTU Press 2018
UDC 620.22 LBC Ч481.211я7 Published by the decision of the Editorial Review Board of the Kazan National Research Technological University Reviewers: Doctor of Chemistry, Professor L. Zakharova PhD in Philology, Associate Professor G. Safiullina Bezrukov A. Research Methods for Smart Materials : tutorial / A. Bezrukov, Yu. Galyametdinov; The Ministry of Science and Higher Education of the Russian Federation, Kazan National Research Technological University. – Kazan : KNRTU Press, 2018. – 84 p. ISBN 978-5-7882-2515-9 The main research methods for study and characterization of smart materials (as objects of interest for modern advanced research activities) are discussed in this tutorial. Various characterization methods are considered, such as dynamic light scattering, nuclear magnetic resonance, atomic force microscopy, X-ray diffraction, electron microscopy, and etc. The primary target audience of this tutorial are Master’s students majoring in the following areas of study: 18.04.01 “Chemical Engineering”, 28.04.02 “Nanoengineering”, and 22.04.01 “Materials Science and Technology”. This tutorial was developed at the Department of Physical and Colloidal Chemistry. This tutorial was developed with the support of Potanin Foundation Grant for Master’s program teaching faculty, Agreement # ГСГК-25/18. ISBN 978-5-7882-2515-9 © Bezrukov A., Galyametdinov Yu., 2018 © Kazan National Research Technological University, 2018 UDC 620.22 LBC Ч481.211я7
ВВЕДЕНИЕ В настоящее время набирает популярность концепция так называемых «умных материалов» или «smart materials». Термин «smart» все более интенсивно применяется не только к технологическим процессам и устройствам, но и к различным материалам, а также объектам молекулярного и надмолекулярного уровней, определяющих свойства таких материалов в макромасштабе. Ученые США, Германии, Великобритании, России и других стран описывают различные аспекты смарт-материалов и систем, их формирующих. Ввиду значительного многообразия объектов изучения, приводятся и обсуждаются примеры из самых различных областей – от электроники до медицины. Вместе в тем авторы дают сходное определение смарт-материалов как систем, способных изменять свои свойства под действием внешних факторов, таких как температура, давление, свет, а также pH и другие свойства среды. Это обусловливает применение умных материалов в качестве различных сенсоров, актуаторов, способных избирательно реагировать на внешние воздействия. Данное пособие посвящено основным методам изучения и ха рактеристики «умных материалов», таким как динамическое рассеяние света, ядерный магнитный резонанс, атомно-силовая микроскопия, рентгеновская дифракция, электронная микроскопия, малоугловое рентгеновское рассеяние и т.д. В пособии рассмотрен ряд спектроскопических методов ис следования, таких как фотонная корреляционная спектроскопия (динамическое светорассеяние), спектроскопия ядерного магнитного резонанса, масс-спектроскопия и т.д. Уделяется внимание различным методами микроскопических исследований, таким как электронная микроскопия. Рассматриваются методы изучения поверхности: атомная-силовая микроскопия, метод измерения краевого угла. Обсуждаются методы исследования свойств частиц в микрожидкостных каналах. Пособие разработано при поддержке Благотворительного фонда Владимира Потанина в рамках гранта для преподавателей магистратуры. Основная идея данного проекта – разработка англоязычного модуля для магистерской программы «Физико
химические особенности супрамолекулярно-организованных процессов и систем», включающего лекционные курсы и практические занятия с целью развития у студентов, обучающихся по данной программе, компетенций международного профессионального общения. Пособие разработано как для русскоязычных магистрантов и аспирантов вузов естественно-научного профиля, так и для привлечения студентов из зарубежных стран для обучения в рамках международных образовательных программ. Другая целевая аудитория данного пособия – студенты, изучающие английский язык, в рамках соответствующих дополнительных профессионально-ориентированных программ подготовки.
INTRODUCTION Smart materials are the key components of modern industry and science. A concept of so-called intelligent or smart materials is rapidly becoming more and more popular. Such materials are responsive to various external stimuli, such as temperature, pressure, electric fields, magnetic fields, pH, ionic factors, surface interactions and etc. Therefore, their properties can be controlled in a variety of different ways to obtain a useful response. Smart materials offer new solutions for many branches of industry. Polymers or other functional materials doped with nanoparticles demonstrate a set of new interesting properties broadening their application areas and commercial attractiveness. Surface treatment of solid materials can form a nanolayer with difference structure and properties. Although several nanometers in depth, such surfaces are responsible for completely different behavior of treated materials. Intelligent materials with electric and/or magnetic properties are utilized in electronic industry and other branches of industry where selective response to electric or magnetic fields is important. Another exciting research field closely related to smart materials is soft matter science. Soft matter is represented by various polymer nanoparticles in solutions, surfactant micelles, vesicles, bilayer structures and etc. Soft matter is often a smart responsive structure: if we change the ratio of components, medium composition, pH, hydrophilic-lipophilic balance and etc., we will obtain a lot of different systems at nanoscale with various size, shape, surface activity and volume properties. Soft matter is the key component of drug delivery systems. Smart materials represent an interdisciplinary topic which is closely related to materials science, nanotechnology, chemistry, chemical engineering, interfacial phenomena, solution chemistry, supramolecular chemistry, biochemistry and biotechnology, and etc. Smart materials courses are taught in many universities abroad gaining growing attention from students. For example, Royal Melbourne Institute of Technology, Australia, offers a “Nanotechnology and Smart Materials” Master’s Degree program. University of California in LosAngeles has launched a similar academic program entitled “Multifunctional and Smart Materials”. A term similar to “Smart Materials” is
“Advanced Materials”. Such programs and courses are offered by top universities in the USA and Europe: University of Gratz, Austria (Advanced Materials Science); Ulm University, Germany (Advanced Materials); University of Bordeaux, France (Advanced Materials); California State University Northridge, USA (Advanced Materials Science); Cranfield University, Great Britain (Advanced Materials). This study guide was inspired by the grant provided by V. Potanin Foundation for the development of teaching components for a Master’s Degree Program (in this specific case for a program entitled “Physicochemical Properties of Supramolecularly Organized Processes and Systems”). Therefore, it is a part of an integral project aimed at introducing a Smart Materials component in English into the existing program developed in Russian. Therefore, it can be used both by Russian students who intend to enrich their study experience with courses taught in English and foreign students who plan to take a STEM course in English. This study guide is subdivided into twelve chapters each describ ing a certain analytical method for study and characterization of smart materials. The first chapter introduces spectroscopic methods in general. It is followed by the chapter describing photon correlation spectroscopy (or dynamic light scattering). This method is a powerful tool to characterize the size of nanoparticles, soft matter systems, polymer macromolecules, and drug delivery systems. Chapter 3 provides an overview of nuclear magnetic resonance that is among most powerful tools to study the molecular structure of substances. Chapter 4 proceeds to the particle size analysis by differential cen trifugal sedimentation. This method is convenient for the size characterization of colloidal particles and supramolecular systems. Chapter 5 summarizes microfluidic methods that can be applied to characterization of smart materials such as soft matter or drug delivery systems. Chapters 6 and 7 offer an overview of two popular surface analysis methods: atomic force microscopy and contact angle measurement. These methods are powerful instruments for surface characterization by direct measurements (cantilever motions) and surface wetting studies (contact angle).
Chapter 8 continues the overview of spectroscopy methods by a short introduction to mass spectroscopy. It is followed by an overview of electron microscopy in chapters 9 and 10. Electron microscopy is an outstanding analytic method offering visualization of microstructures. Introduction to this microscopy method is subdivided into two chapters focusing on transmission electron microscopy and scanning electron microscopy, respectively. Finally, X-ray methods are discussed in this study guide. Chapter 11 was reserved for X-ray diffraction, while the last chapter finalizes this study guide with the introduction to small-angle X-ray scattering. These methods capable of unveiling molecular level structures in various types of materials, so they offer a lot of opportunities for characterization of smart materials. This study guide can be supplemented by the lecture course “Introduction to Smart Materials” which is also developed within the frame work of the grant provided by V. Potanin Foundation. Another potential application of this study guide is English teaching for STEM students. Materials in English provided in every chapter can be used for training speaking and translation skills. The main target audience of this guide are Master’s and PhD students studying STEM programs at engineering universities including foreign students who selected academic programs or research activities related to smart materials, nanotechnologies or materials science. It can be also used as a methodological component of international Master’s programs or online teaching courses.
HOW TO USE THIS STUDY GUIDE This study guide provides an overview of research methods for smart materials, such as spectroscopic, microscopic and surface characterization methods. The term “Smart Materials” is quite broad, so the analytical methods for their characterization are definitely not limited to the areas described in this study guide. The research methods for smart materials discussed here are mostly related to chemical engineering, physical chemistry, polymers, supramolecular systems and soft matter. This study guide consists of several chapters which can be used both individually and step-by-step. These chapters can be used by students or professors as separate topics to be studied as an English in addition to the disciplines they teach or as an integral “Smart Materials” guide if such a discipline is included into their Master’s degree program. Analytical methods described in this study guide are used in a va riety of scientific research areas not limited to smart materials only. Dynamic light scattering, nuclear magnetic resonance, mass spectroscopy, X-ray methods, and etc. are powerful experimental techniques providing customized solutions for many specific research areas. It should be emphasized that the research methods for intelligent materials are much broader than the analytical techniques summarized in this study guide, where the major focus was given to characterization of smart materials represented by soft matter structures. Students are encouraged to learn more about application of advanced materials from up-to-date publications. Each chapter begins with the list of self-development questions, so the students can prepare to studying the content of this chapter. For a teacher, it is recommended to check the answers before the students proceed to the chapter itself. These questions are usually more general than the information provided in the chapter for broader understanding of the analytical method this chapter describes. The control questions in the beginning and the end of each topic proved to be an efficient tool for discussion with students the main aspects of STEM topic in English, so faculty using this study guide is recommended to include questions-and-answers session at the beginning of their class.
The final part of each chapter in this study guide is dedicated to a list of tasks, which can be made in a form of student presentations which will consider certain aspects of characterization methods for smart materials. It is recommended that such presentations cover some additional areas not mentioned in this text. This study guide was developed for a Master’s Degree Program entitled “Physicochemical Properties of Supramolecularly Organized Processes and Systems” which is further transforming into a program mostly focused on molecular materials. Therefore, this guide is a part of a broader project funded by V. Potanin Foundation, so other teaching components are recommended to use with this study guide, such as “Introduction to Smart Materials” course. The “Research Methods for Smart Materials” study guide consists of chapters describing various types of smart materials (polymers, soft matter, drug delivery system, ad etc.). Each chapter can be supplemented by a suitable chapter in “Research Methods for Smart Materials”, which characterizes analytical techniques suitable for certain types of smart materials.