Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Introduction to Smart Material

Покупка
Артикул: 787075.01.99
Доступ онлайн
500 ₽
В корзину
This tutorial discusses some aspects of synthesis and practical application of smart materials - the objects of cutting edge fundamental and applied research. Various types of smart materials are discussed, such as polymer composites, liquid crystal systems, target drug delivery systems, and etc. This tutorial is originally composed in English. The tutorial is designed for students in the following Master's Degree training areas: 18.04.01 "Chemical Engineering”, 28.04.02 "Nanoengineering”, 22.04.02 "Materials Science and Materials Engineering”, and PhD students in the 04.06.01 "Chemical Engineering” area. The tutorial was composed at the Department of Physical and Colloidal Chemistry.
Безруков, А. Н. Bezrukov, A. Introduction to Smart Material : tutorial / A. Bezrukov, Yu. Galyametdinov ; The Ministry of Education and Science of the Russian Federation, Kazan National Research Technological University. - Kazan : KNRTU Press, 2018. - 84 p. - ISBN 978-5-7882-2570-8. - Текст : электронный. - URL: https://znanium.com/catalog/product/1895243 (дата обращения: 17.05.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
The Ministry of Science and Higher Education of the Russian Federation

Kazan National Research Technological University

A. Bezrukov, Yu. Galyametdinov

INTRODUCTION 

TO SMART MATERIALS

Тutorial 

Kazan

KNRTU Press

2018

UDK 620.22
BBK Ч481.211я7

Published by the decision of the Editorial Review Board
of the Kazan National Research Technological University

Reviewers:

Doctor of Chemistry, Professor L. Zakharova

PhD in Philology, Associate Professor G. Safiullina

Bezrukov A.
Introduction to Smart Material : tutorial / A. Bezrukov, Yu. Galyametdinov; 
The Ministry of Education and Science of the Russian Federation, Kazan 
National Research Technological University. – Kazan : KNRTU Press, 
2018. – 84 p.

ISBN 978-5-7882-2570-8

This tutorial discusses some aspects of synthesis and practical application of 

smart materials - the objects of cutting edge fundamental and applied research. Var-
ious types of smart materials are discussed, such as polymer composites, liquid 
crystal systems, target drug delivery systems, and etc.

This tutorial is originally composed in English. The tutorial is designed for 

students in the following Master's Degree training areas: 18.04.01 “Chemical Engi-
neering”, 28.04.02 “Nanoengineering”, 22.04.02 “Materials Science and Materials 
Engineering”, and PhD students in the 04.06.01 “Chemical Engineering” area.

The tutorial was composed at the Department of Physical and Colloidal 

Chemistry.

This tutorial was developed with the support of Potanin Foundation Grant 

for Master’s program teaching faculty, Agreement # ГСГК-25/18.

ISBN 978-5-7882-2570-8
© Bezrukov A., Galyametdinov Yu., 2018
© Kazan National Research Technological 

University, 2018

UDK 620.22
BBK Ч481.211я7

В В Е Д Е Н И Е  

В настоящее время набирает популярность концепция так называемых «
умных материалов», или smart materials. Термин smart все 
более интенсивно применяется не только к технологическим процессам 
и устройствам, но и к различным материалам, а также объектам 
молекулярного и надмолекулярного уровня.

Ученые США, Германии, Великобритании и других стран [1–6] 

описывают различные аспекты умных материалов и их компонентов. 
Ввиду значительного многообразия объектов изучения, авторами приводятся 
и обсуждаются примеры из самых различных областей – от 
электроники до медицины. Вместе в тем, различные литературные источники 
дают сходное определение смарт-материалов как систем, способных 
изменять свои свойства под действием внешних факторов, таких 
как температура, давление, свет, pH, состав среды и т. д. Это обуславливает 
применение умных материалов в качестве индивидуальных 
объектов или компонентов различных устройств, способных избирательно 
реагировать на внешние управляющие воздействия или изменение 
свойств среды.

Умные материалы часто находят применение в области нанотехнологий, 
так как способность избирательного ответа на внешние 
воздействия часто заложена в надмолекулярной структуре компонентов 
таких материалов, их организации в масштабе нескольких десят-
ков или сотен нанометров.

В первой части настоящего пособия основное внимание уделено 

структурным особенностям надмолекулярных систем, которые обу-
славливают появление на макроуровне комплекса свойств, характер-
ных для умных материалов. Рассматриваются общие характеристики 
смарт-материалов, процессы на границе раздела фаз, так называемые 
«мягкие системы» (soft matter), соединения с анизотропией свойств 
(жидкие кристаллы). В отдельных разделах первой части уделяется 
внимание общим вопросам получения «умных материалов», в том 
числе микрожидкостным методом, который предлагает широкие воз-
можности для получения функциональных материалов с заданными 
свойствами. 

Вторая часть пособия посвящена общим вопросам практическо-

го использования «умных» материалов». Описывается ряд конкретных
областей применения подобных материалов, интенсивно развиваю-

щихся в настоящее время, и вызывающих значительный интерес 
в научной и производственной сферах: «умные» материалы для поли-
мерной промышленности, электроники и медицины (например, систе-
мы адресной доставки лекарственных средств – drug delivery).

Каждый раздел пособия содержит вопросы для самоподготовки 

и обсуждения в ходе занятия, а также перечень контрольных вопросов 
после завершения изучения раздела. Для самостоятельной работы сту-
дентов в конце каждого раздела приведены темы презентаций, кото-
рые могут быть представлены на занятиях для расширенного обсуж-
дения каждой темы.

Пособие разработано при поддержке Благотворительного фонда 

Владимира Потанина в рамках гранта для преподавателей магистрату-
ры. Основная идея данного проекта – разработка англоязычного моду-
ля для магистерской программы «Физико-химические особенности 
супрамолекулярно-организованных процессов и систем», включающе-
го лекционные курсы и практические занятия с целью развития у сту-
дентов, обучающихся по данной программе, компетенций междуна-
родного профессионального общения.

Пособие предназначено для магистрантов вузов естественно-

научного профиля, в том числе из зарубежных стран, обучающихся по 
направлениям подготовки магистров 18.04.01 «Химическая техноло-
гия», 28.04.02 «Наноинженерия», 22.04.01 «Материаловедение и тех-
нологии материалов», а также аспирантов, обучающихся по направлению 
04.06.01 «Химические науки».

Пособие разработано как для обучения русскоязычных магистрантов 
и аспирантов вузов естественно-научного профиля, так и 
с целью привлечения студентов из зарубежных стран для обучения на 
английском языке. Другая целевая аудитория данного пособия – студенты, 
изучающие английский язык, в рамках соответствующих дополнительных 
профессионально-ориентированных программ иноязычной 
подготовки.

4

I n t r o d u c t i o n  

New functional materials are the key components of modern industry 

and science. A concept of so-called smart materials is rapidly becoming 
more and more popular. Such materials are responsive to the influence of 
various factors, such as temperature, pressure, electric fields, surface prop-
erties and etc. Therefore, their properties can be controlled in a variety of 
different ways.

Nanotechnology has provided new solutions for many branches of 

industry. Polymers or other functional materials doped with nanoparticles 
demonstrate a set of new interesting properties broadening their application 
areas and commercial attractiveness. Surface treatment of solid materials 
can form a nanolayer with difference structure and properties. Although 
several nanometers in depth, such surfaces are responsible for completely 
different behavior of treated materials.

Another important research field closely related to smart materials is 

soft matter science. Soft matter is represented by various polymer nanopar-
ticles in solutions, surfactant micelles, vesicles, bilayer structures and etc. 
Soft matter is often a smart responsive structure: if we change the ratio of 
components, medium composition, pH, hydrophilic-lipophilic balance and 
etc., we will obtain a lot of different systems at nanoscale with various size, 
shape, surface activity and volume properties. Soft matter is the key com-
ponent of target drug delivery systems.

From the viewpoint of education, smart materials represent an inter-

disciplinary topic which is closely related to material science, nanoscience 
and nanotechnology, chemistry, chemical engineering, interfacial phenom-
ena, solution chemistry, biochemistry and biotechnology, and etc.

Smart materials courses are taught in many universities abroad gain-

ing growing attention from students. For example, Royal Melbourne Insti-
tute of Technology, Australia, offers a “Nanotechnology and Smart Materi-
als” Master’s Degree program. University of California in Los-Angeles has 
launched a similar academic program entitled “Multifunctional and Smart 
Materials”. A term similar to “Smart Materials” is “Advanced Materials”. 
Such programs and courses are offered by top universities in the USA and 
Europe: University of Gratz, Austria (Advanced Materials Science); Ulm 
University, Germany (Advanced Materials); University of Bordeaux, 
France (Advanced Materials); California State University Northridge, USA

(Advanced Materials Science); Cranfield University, Great Britain (Ad-
vanced Materials).

This study guide was inspired by the grant provided by V. Potanin 

Foundation for the development of teaching components for a Master’s De-
gree Program (in this specific case for a program entitled “Physicochemical 
Properties of Supramolecularly Organized Processes and Systems”).

Therefore, it is a part of an integral project aimed at introducing 

a Smart Materials component in English into the existing program devel-
oped in Russian. Therefore, it can be used both by Russian students who 
intend to enrich their study experience with courses taught in English and 
foreign students who plan to take a STEM course in English.

Two main parts of this study guide: “Introduction to smart materials” 

and “Applications of Smart Materials” give an overview of theoretical as-
pects of smart materials and their practical applications, respectively.

The chapter “Smart Materials at a Glance” discusses the concept of 

smart materials, main historical milestones of smart materials and provides 
the analysis of their current state and future.

Chapter 2 describes smart materials in the context of nanotechnology, 

which is usually a cornerstone of advanced functional materials. Then, 
Chapter 3 gives an overview of interfacial phenomena that is of key im-
portance for nanotechnology, soft matter and smart materials.

Chapter 4 gives an overview of a very broad topic that is soft matter. 

Various systems representing soft matter are good examples of smart mate-
rials in solutions.

Chapter 5 proceeds to production of nanomaterials: from synthesis at 

a lab scale to potential commercial applications.

Chapter 6 describes a lab-on-a-chip approach to synthesis of soft 

matter and smart materials in microfluidic channels. Microfluidic confine-
ment creates unique environment for synthesis of functional nanoparticles,
soft matter and other smart systems.

Part two begins with the analysis of general aspects of smart materi-

als applications and their contribution to the development of next genera-
tion technologies. It is followed by the Chapter “Polymer Smart Materials” 
which discusses polymer composites doped with nanoparticles and other 
advanced polymers materials.

Two next chapters discuss applications of smart materials in electron-

ics and medicine finalized by general overview of smart functional nano-
materials and their applications.

Thus, various aspects of smart materials are discussed in this study 

guided: their synthesis, study and practical applications. Various types of 
smart materials are discussed, such as polymer nanocomposites, liquid crys-
tal systems and representatives of “soft matter”.

This study guide can be supplemented by the lecture course “Intro-

duction to Smart Materials” which is also developed within the frame work 
of the grant provided by V. Potanin Foundation. 

Another potential application of this study guide is English teaching 

for STEM students. Materials in English provided in every chapter can be 
used for training speaking and translation skills.

The main target audience of this guide are Master’s and PhD students 

studying STEM programs at engineering universities including foreign stu-
dents who selected academic programs or research activities related to 
smart materials, nanotechnologies or materials science. It can be also used 
as a methodological component of international Master’s programs or 
online teaching courses.

7

H o w  t o  U s e  T h i s  S t u d y  G u i d e  

This study guide consists of several chapters which can be used both 

individually and step-by-step. Below is a short description of chapters for 
students or professors as separate topics to be studied as an English addition 
to the disciplines they teach or as an integral “Smart Materials” guide if 
such a discipline is included into a Master’s degree program.

This study guide provides an overview of smart materials – from 

general concepts to their applications. The term “Smart Materials” is quite 
broad and should not be limited to the areas described in this study guide. 
The aspects and applications of smart materials discussed here are mostly 
related to chemical engineering, physical chemistry, polymers, supramolec-
ular systems and soft matter. Smart materials may be also applicable to 
computer science, electrical engineering, electronics, and etc.

Each chapter of this study guide described a broader area which is 

not limited to smart materials only, especially chapters dedicated to micro-
fluidics, polymers, liquid crystals, nanotechnology, applications of smart 
materials in electronics and medicine. These chapters, therefore, can be of-
fered as a supplementary source of information to the respective STEM dis-
ciplines.

As this text is intended for chemical engineers, the major focus is 

given to various aspects of smart materials chemistry, fabrication of smart 
materials and micro- and nanostructures which contribute to properties of 
such advanced materials at a macroscale. A major attention is given to pol-
ymers and composites, soft matter made of polymers, surfactants and quan-
tum dots, liquid crystals, drug delivery systems, nanoparticles and etc.

The areas of smart materials application selected to be described in 

this study guide also follow this general approach to characterize smart ma-
terials at a molecular level first, discuss unique properties they obtain and 
explain their attractiveness from a macroscale prospective. Therefore, chap-
ters dedicated to applications of smart materials in polymer industry, elec-
tronics and medicine are accompanied by a chapter describing functional 
nanomaterials.

A microfluidic approach to synthesis of soft matter is a chapter dis-

cussing a new trend in making functional materials in a micrometer channel 
confinement. It should be emphasized that it is a new methodology which is 
applicable to various parts of smart materials such as polymers, quantum 
dots, liquid crystals and other supramolecular structures.

Application areas of smart materials described in this study guide in-

clude but are not limited to materials for molecular electronics and medi-
cine (such as drug delivery systems and materials for polymer composites.

It should be emphasized that application areas of advanced materials 

are much broader than those described in this text, which was mostly lim-
ited to various aspects of smart materials related to chemical engineering 
and soft matter. Student are encouraged to learn more about application of 
advanced materials from up-to-date publications.

The control questions in the beginning and the end of each topic 

proved to be an efficient tool for discussion with students the main aspects 
of STEM topic in English, so faculty using this study guide is recommend-
ed to include questions-and-answers session at the beginning of their class.

9

1 .  I N T R O D U C T I O N  T O  S M A R T  M A T E R I A L S  

The concept of “smart” or “advanced” materials has been attracting 

growing interest from world scientific and industrial community for many 
years. The recent studies resulted in certain progress in the development of
various organized structures that are able to continuously and actively mon-
itor, control and optimize themselves and their characteristics through, for 
example, emulating various biological systems or following advanced arti-
ficial designs with their key capabilities such as adaptivity and integrated 
design corresponding to the specific application area.

The area of smart materials is certainly multidisciplinary as it com-

bines a series of interconnected fields of science such as nanoscience and 
nanotechnology, chemistry and physics, supramolecular chemistry, materi-
als science, and etc. It is also importance that this filed of science is inter-
disciplinary and it contributes to a certain a number of enabling technolo-
gies which will shape our scientific and technological future within 15-20 
years. Such disciplines include but are not limited to materials science, au-
tomation and control, processing of information, sensing – and integration 
of smart systems across a broad range of industrial applications.

Modern diverse and integrated technologies that contribute to the 

field of smart materials and the respective structures are at different stages 
of applied research and commercialization. The examples include piezoe-
lectric ceramics, functionalized polymers, and various sensor systems based 
on fiber-optic materials, functionalized surfaces, soft matter and anisotropic 
materials. The commercial technologies for such systems are considered to 
be well-established.

Other examples of smart materials include micromachined electro-

mechanical systems (MEMS), alloys with shape memory, nanostructured 
and conductive polymers, and etc. For these smart materials stages of com-
mercialization are quite earlier. The upcoming wave of smart technologies 
will likely witness more intensive introduction of materials and systems
with electro- and magneto-rheological fluids. Here, microfluidic approach 
seems to be promising as it provides unique opportunities for synthesizing 
components of smart materials in microchannel confinement and their sim-
ultaneous application for sensing or analytical purposes.

Доступ онлайн
500 ₽
В корзину