Introduction to Smart Material
Покупка
Тематика:
Химия полимеров
Год издания: 2018
Кол-во страниц: 84
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Магистратура
ISBN: 978-5-7882-2570-8
Артикул: 787075.01.99
This tutorial discusses some aspects of synthesis and practical application of smart materials - the objects of cutting edge fundamental and applied research. Various types of smart materials are discussed, such as polymer composites, liquid crystal systems, target drug delivery systems, and etc.
This tutorial is originally composed in English. The tutorial is designed for students in the following Master's Degree training areas: 18.04.01 "Chemical Engineering”, 28.04.02 "Nanoengineering”, 22.04.02 "Materials Science and Materials Engineering”, and PhD students in the 04.06.01 "Chemical Engineering” area.
The tutorial was composed at the Department of Physical and Colloidal Chemistry.
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Магистратура
- 18.04.01: Химическая технология
- 22.04.02: Металлургия
- 28.04.02: Наноинженерия
- Аспирантура
- 04.06.01: Химические науки
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
The Ministry of Science and Higher Education of the Russian Federation Kazan National Research Technological University A. Bezrukov, Yu. Galyametdinov INTRODUCTION TO SMART MATERIALS Тutorial Kazan KNRTU Press 2018
UDK 620.22 BBK Ч481.211я7 Published by the decision of the Editorial Review Board of the Kazan National Research Technological University Reviewers: Doctor of Chemistry, Professor L. Zakharova PhD in Philology, Associate Professor G. Safiullina Bezrukov A. Introduction to Smart Material : tutorial / A. Bezrukov, Yu. Galyametdinov; The Ministry of Education and Science of the Russian Federation, Kazan National Research Technological University. – Kazan : KNRTU Press, 2018. – 84 p. ISBN 978-5-7882-2570-8 This tutorial discusses some aspects of synthesis and practical application of smart materials - the objects of cutting edge fundamental and applied research. Various types of smart materials are discussed, such as polymer composites, liquid crystal systems, target drug delivery systems, and etc. This tutorial is originally composed in English. The tutorial is designed for students in the following Master's Degree training areas: 18.04.01 “Chemical Engineering”, 28.04.02 “Nanoengineering”, 22.04.02 “Materials Science and Materials Engineering”, and PhD students in the 04.06.01 “Chemical Engineering” area. The tutorial was composed at the Department of Physical and Colloidal Chemistry. This tutorial was developed with the support of Potanin Foundation Grant for Master’s program teaching faculty, Agreement # ГСГК-25/18. ISBN 978-5-7882-2570-8 © Bezrukov A., Galyametdinov Yu., 2018 © Kazan National Research Technological University, 2018 UDK 620.22 BBK Ч481.211я7
В В Е Д Е Н И Е В настоящее время набирает популярность концепция так назы ваемых «умных материалов», или smart materials. Термин smart все более интенсивно применяется не только к технологическим процессам и устройствам, но и к различным материалам, а также объектам молекулярного и надмолекулярного уровня. Ученые США, Германии, Великобритании и других стран [1–6] описывают различные аспекты умных материалов и их компонентов. Ввиду значительного многообразия объектов изучения, авторами приводятся и обсуждаются примеры из самых различных областей – от электроники до медицины. Вместе в тем, различные литературные источники дают сходное определение смарт-материалов как систем, способных изменять свои свойства под действием внешних факторов, таких как температура, давление, свет, pH, состав среды и т. д. Это обуславливает применение умных материалов в качестве индивидуальных объектов или компонентов различных устройств, способных избирательно реагировать на внешние управляющие воздействия или изменение свойств среды. Умные материалы часто находят применение в области нано технологий, так как способность избирательного ответа на внешние воздействия часто заложена в надмолекулярной структуре компонентов таких материалов, их организации в масштабе нескольких десятков или сотен нанометров. В первой части настоящего пособия основное внимание уделено структурным особенностям надмолекулярных систем, которые обуславливают появление на макроуровне комплекса свойств, характерных для умных материалов. Рассматриваются общие характеристики смарт-материалов, процессы на границе раздела фаз, так называемые «мягкие системы» (soft matter), соединения с анизотропией свойств (жидкие кристаллы). В отдельных разделах первой части уделяется внимание общим вопросам получения «умных материалов», в том числе микрожидкостным методом, который предлагает широкие возможности для получения функциональных материалов с заданными свойствами. Вторая часть пособия посвящена общим вопросам практическо го использования «умных» материалов». Описывается ряд конкретных областей применения подобных материалов, интенсивно развиваю
щихся в настоящее время, и вызывающих значительный интерес в научной и производственной сферах: «умные» материалы для полимерной промышленности, электроники и медицины (например, системы адресной доставки лекарственных средств – drug delivery). Каждый раздел пособия содержит вопросы для самоподготовки и обсуждения в ходе занятия, а также перечень контрольных вопросов после завершения изучения раздела. Для самостоятельной работы студентов в конце каждого раздела приведены темы презентаций, которые могут быть представлены на занятиях для расширенного обсуждения каждой темы. Пособие разработано при поддержке Благотворительного фонда Владимира Потанина в рамках гранта для преподавателей магистратуры. Основная идея данного проекта – разработка англоязычного модуля для магистерской программы «Физико-химические особенности супрамолекулярно-организованных процессов и систем», включающего лекционные курсы и практические занятия с целью развития у студентов, обучающихся по данной программе, компетенций международного профессионального общения. Пособие предназначено для магистрантов вузов естественно научного профиля, в том числе из зарубежных стран, обучающихся по направлениям подготовки магистров 18.04.01 «Химическая технология», 28.04.02 «Наноинженерия», 22.04.01 «Материаловедение и технологии материалов», а также аспирантов, обучающихся по направлению 04.06.01 «Химические науки». Пособие разработано как для обучения русскоязычных маги странтов и аспирантов вузов естественно-научного профиля, так и с целью привлечения студентов из зарубежных стран для обучения на английском языке. Другая целевая аудитория данного пособия – студенты, изучающие английский язык, в рамках соответствующих дополнительных профессионально-ориентированных программ иноязычной подготовки. 4
I n t r o d u c t i o n New functional materials are the key components of modern industry and science. A concept of so-called smart materials is rapidly becoming more and more popular. Such materials are responsive to the influence of various factors, such as temperature, pressure, electric fields, surface properties and etc. Therefore, their properties can be controlled in a variety of different ways. Nanotechnology has provided new solutions for many branches of industry. Polymers or other functional materials doped with nanoparticles demonstrate a set of new interesting properties broadening their application areas and commercial attractiveness. Surface treatment of solid materials can form a nanolayer with difference structure and properties. Although several nanometers in depth, such surfaces are responsible for completely different behavior of treated materials. Another important research field closely related to smart materials is soft matter science. Soft matter is represented by various polymer nanoparticles in solutions, surfactant micelles, vesicles, bilayer structures and etc. Soft matter is often a smart responsive structure: if we change the ratio of components, medium composition, pH, hydrophilic-lipophilic balance and etc., we will obtain a lot of different systems at nanoscale with various size, shape, surface activity and volume properties. Soft matter is the key component of target drug delivery systems. From the viewpoint of education, smart materials represent an inter disciplinary topic which is closely related to material science, nanoscience and nanotechnology, chemistry, chemical engineering, interfacial phenomena, solution chemistry, biochemistry and biotechnology, and etc. Smart materials courses are taught in many universities abroad gain ing growing attention from students. For example, Royal Melbourne Institute of Technology, Australia, offers a “Nanotechnology and Smart Materials” Master’s Degree program. University of California in Los-Angeles has launched a similar academic program entitled “Multifunctional and Smart Materials”. A term similar to “Smart Materials” is “Advanced Materials”. Such programs and courses are offered by top universities in the USA and Europe: University of Gratz, Austria (Advanced Materials Science); Ulm University, Germany (Advanced Materials); University of Bordeaux, France (Advanced Materials); California State University Northridge, USA
(Advanced Materials Science); Cranfield University, Great Britain (Advanced Materials). This study guide was inspired by the grant provided by V. Potanin Foundation for the development of teaching components for a Master’s Degree Program (in this specific case for a program entitled “Physicochemical Properties of Supramolecularly Organized Processes and Systems”). Therefore, it is a part of an integral project aimed at introducing a Smart Materials component in English into the existing program developed in Russian. Therefore, it can be used both by Russian students who intend to enrich their study experience with courses taught in English and foreign students who plan to take a STEM course in English. Two main parts of this study guide: “Introduction to smart materials” and “Applications of Smart Materials” give an overview of theoretical aspects of smart materials and their practical applications, respectively. The chapter “Smart Materials at a Glance” discusses the concept of smart materials, main historical milestones of smart materials and provides the analysis of their current state and future. Chapter 2 describes smart materials in the context of nanotechnology, which is usually a cornerstone of advanced functional materials. Then, Chapter 3 gives an overview of interfacial phenomena that is of key importance for nanotechnology, soft matter and smart materials. Chapter 4 gives an overview of a very broad topic that is soft matter. Various systems representing soft matter are good examples of smart materials in solutions. Chapter 5 proceeds to production of nanomaterials: from synthesis at a lab scale to potential commercial applications. Chapter 6 describes a lab-on-a-chip approach to synthesis of soft matter and smart materials in microfluidic channels. Microfluidic confinement creates unique environment for synthesis of functional nanoparticles, soft matter and other smart systems. Part two begins with the analysis of general aspects of smart materi als applications and their contribution to the development of next generation technologies. It is followed by the Chapter “Polymer Smart Materials” which discusses polymer composites doped with nanoparticles and other advanced polymers materials. Two next chapters discuss applications of smart materials in electron ics and medicine finalized by general overview of smart functional nanomaterials and their applications.
Thus, various aspects of smart materials are discussed in this study guided: their synthesis, study and practical applications. Various types of smart materials are discussed, such as polymer nanocomposites, liquid crystal systems and representatives of “soft matter”. This study guide can be supplemented by the lecture course “Intro duction to Smart Materials” which is also developed within the frame work of the grant provided by V. Potanin Foundation. Another potential application of this study guide is English teaching for STEM students. Materials in English provided in every chapter can be used for training speaking and translation skills. The main target audience of this guide are Master’s and PhD students studying STEM programs at engineering universities including foreign students who selected academic programs or research activities related to smart materials, nanotechnologies or materials science. It can be also used as a methodological component of international Master’s programs or online teaching courses. 7
H o w t o U s e T h i s S t u d y G u i d e This study guide consists of several chapters which can be used both individually and step-by-step. Below is a short description of chapters for students or professors as separate topics to be studied as an English addition to the disciplines they teach or as an integral “Smart Materials” guide if such a discipline is included into a Master’s degree program. This study guide provides an overview of smart materials – from general concepts to their applications. The term “Smart Materials” is quite broad and should not be limited to the areas described in this study guide. The aspects and applications of smart materials discussed here are mostly related to chemical engineering, physical chemistry, polymers, supramolecular systems and soft matter. Smart materials may be also applicable to computer science, electrical engineering, electronics, and etc. Each chapter of this study guide described a broader area which is not limited to smart materials only, especially chapters dedicated to microfluidics, polymers, liquid crystals, nanotechnology, applications of smart materials in electronics and medicine. These chapters, therefore, can be offered as a supplementary source of information to the respective STEM disciplines. As this text is intended for chemical engineers, the major focus is given to various aspects of smart materials chemistry, fabrication of smart materials and micro- and nanostructures which contribute to properties of such advanced materials at a macroscale. A major attention is given to polymers and composites, soft matter made of polymers, surfactants and quantum dots, liquid crystals, drug delivery systems, nanoparticles and etc. The areas of smart materials application selected to be described in this study guide also follow this general approach to characterize smart materials at a molecular level first, discuss unique properties they obtain and explain their attractiveness from a macroscale prospective. Therefore, chapters dedicated to applications of smart materials in polymer industry, electronics and medicine are accompanied by a chapter describing functional nanomaterials. A microfluidic approach to synthesis of soft matter is a chapter dis cussing a new trend in making functional materials in a micrometer channel confinement. It should be emphasized that it is a new methodology which is applicable to various parts of smart materials such as polymers, quantum dots, liquid crystals and other supramolecular structures.
Application areas of smart materials described in this study guide in clude but are not limited to materials for molecular electronics and medicine (such as drug delivery systems and materials for polymer composites. It should be emphasized that application areas of advanced materials are much broader than those described in this text, which was mostly limited to various aspects of smart materials related to chemical engineering and soft matter. Student are encouraged to learn more about application of advanced materials from up-to-date publications. The control questions in the beginning and the end of each topic proved to be an efficient tool for discussion with students the main aspects of STEM topic in English, so faculty using this study guide is recommended to include questions-and-answers session at the beginning of their class. 9