Методы и модели управления ограниченными ресурсами в логистических системах
Покупка
Основная коллекция
Тематика:
Основы логистики
Издательство:
НИЦ ИНФРА-М
Год издания: 2022
Кол-во страниц: 185
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Бакалавриат
ISBN: 978-5-16-013083-5
ISBN-онлайн: 978-5-16-105868-8
Артикул: 151150.06.01
К покупке доступен более свежий выпуск
Перейти
В предлагаемой работе рассмотрены оптимизационные модели управления ограниченными ресурсами в логистических системах. Такими системами в первую очередь являются промышленные предприятия, транспортные компании, современные системы складирования и др.
Как правило, эффективность функционирования перечисленных объектов во многом зависит от того, насколько рационально использованы ограниченные ресурсы такого вида, как производственный аппарат предприятия, трудовые ресурсы, транспортные средства и т.д. В данной работе рассмотрены различные подходы управления такими ресурсами как для детерминированных моделей, так и для ситуаций, когда ряд параметров моделей не задан точно. В этом случае предлагается оценивать устойчивость моделей как по структуре решения, так и по функционалу.
Книга адресована студентам вузов, обучающимся по направлению подготовки «Менеджмент», а также специалистам в области моделирования логистических систем.
Тематика:
ББК:
УДК:
- 65: Управление предприятиями. Организация производства, торговли и транспорта
- 658: Организация производства. Экономика предприятий. Организация и техника торговли
ОКСО:
- ВО - Бакалавриат
- 23.03.01: Технология транспортных процессов
- 38.03.01: Экономика
- 38.03.06: Торговое дело
- 42.03.03: Издательское дело
- ВО - Магистратура
- 29.04.02: Технологии и проектирование техстильных изделий
- 38.04.06: Торговое дело
ГРНТИ:
Скопировать запись
Методы и модели управления ограниченными ресурсами в логистических системах, 2024, 151150.07.01
Методы управления ограниченными ресурсами в логистике, 2014, 151150.03.01
Фрагмент текстового слоя документа размещен для индексирующих роботов
МЕТОДЫ И МОДЕЛИ УПРАВЛЕНИЯ ОГРАНИЧЕННЫМИ РЕСУРСАМИ В ЛОГИСТИЧЕСКИХ СИСТЕМАХ Москва ИНФРА-М 2022 УЧЕБНОЕ ПОСОБИЕ А.В. МИЩЕНКО Допущено УМО по образованию в области логистики в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению «Менеджмент» (специальность «Логистика и управление цепями поставок») 2-е издание, дополненное
УДК 658.7(075.8) ББК 65.40я73 М71 Мищенко А.В. Методы и модели управления ограниченными ресурсами в ло гистических системах : учебное пособие / А.В. Мищенко. – 2-е изд., доп. — Москва : ИНФРА-М, 2022. – 185 с. – (Высшее образование: Бакалавриат). — DOI 10.12737/textbook_5a336be894a629. 59184528. ISBN 978-5-16-013083-5 (print) ISBN 978-5-16-105868-8 (online) В предлагаемой работе рассмотрены оптимизационные модели управле ния ограниченными ресурсами в логистических системах. Такими системами в первую очередь являются промышленные предприятия, транспортные компании, современные системы складирования и др. Как правило, эффективность функционирования перечисленных объектов во многом зависит от того, насколько рационально использованы ограниченные ресурсы такого вида, как производственный аппарат предприятия, трудовые ресурсы, транспортные средства и т.д. В данной работе рассмотрены различные подходы управления такими ресурсами как для детерминированных моделей, так и для ситуаций, когда ряд параметров моделей не задан точно. В этом случае предлагается оценивать устойчивость моделей как по структуре решения, так и по функционалу. Книга адресована студентам вузов, обучающимся по направлению подго товки «Менеджмент», а также специалистам в области моделирования логистических систем. УДК 658.7(075.8) ББК 65.40я73 М71 А в т о р: А.В. Мищенко, доктор экономических наук, профессор Нацио нального исследовательского университета «Высшая школа экономики» Р е ц е н з е н т ы: В.И. Сергеев, доктор экономических наук, профессор, зав. ка федрой Национального исследовательского университета «Высшая школа экономики»; М.А. Бендиков, доктор экономических наук, профессор Цент рального экономико-математического института РАН © Мищенко А.В., 2011 © Мищенко А.В., 2018, с изменениями ISBN 978-5-16-013083-5 (print) ISBN 978-5-16-105868-8 (online) Те х н и ч е с к и й р е д а к т о р — М.А. Коновалова
ВВЕДЕНИЕ Современный уровень развития рыночных отношений в стране характерен широким применением экономико-математических методов и средств компьютерной техники при планировании развития экономических процессов. Основу этого направления составляет возможность формализованного описания моделируемых объектов при разработке планов и оптимизации плановых решений в моделях распределения ограниченных ресурсов как в реальном секторе экономики, так и на финансовых рынках. Эффективное распределение всех видов ресурсов (трудовых, материальных, оборудования, финансов) особенно актуально в период перехода страны к рыночной экономике, что усиливает необходимость применения наиболее эффективных методов планирования и управления. В настоящее время предприятия, находясь в условиях рынка, сами должны формировать планы, отвечать за их материально-техническое обеспечение, используя конкретную форму доступа к материальным и финансовым ресурсам. Модели распределения ограниченных ресурсов часто сводятся к решению линейных и нелинейных оптимизационных задач с целочисленными ограничениями на переменные. Большинство целочисленных задач оптимального распределения ресурсов относится к числу так называемых NP-полных задач [11], решение которых связано с большим объемом вычислений. В то же время, после того как решение получено, оно не всегда может быть использовано из-за того, что исходные данные задачи чаще всего заданы неточно. Эти данные содержат, в частности, информацию о технологических, технических и экономических характеристиках объекта. Числовые значения перечисленных характеристик нередко определяются либо на основе статистической обработки данных, либо в результате процедур прогноза. Учитывая последнее, используемые в модели численные параметры являются оценками точных значений исходных данных с заданной или неизвестной вероятностной функцией распределения. Таким образом, при моделировании реальных объектов возникает неопределенность, роль которой, по выражению Ст. Бира, в поведении реальных систем поистине огромна [10]. Последнее обстоятельство обусловливает важность расчетов для детерминированных моделей с неточными параметрами.
В тех случаях, когда известны вероятностные характеристики неточно заданных параметров, применимы аппарат теории массового обслуживания, методы математической статистики, теории случайных процессов. Если же функции распределения неточно заданной входной информации неизвестны, то влияние на результаты моделирования изменения значений исходных данных рассматривается в рамках теории устойчивости, понимая под устойчивостью либо сохранение (малое изменение) значения целевой функции, либо сохранение заданных свойств решения. Изучением проблем оптимального программирования в условиях неточных исходных данных занимались многие российские и зарубежные ученые. Однако необходимо отметить, что в работах по исследованию оптимизационных задач при неточных исходных данных в основном рассматриваются задачи непрерывного математического программирования и так называемые траекторные экстремальные задачи. В то же время остаются мало исследованными дискретные задачи распределения ограниченных ресурсов в условиях неточно заданной исходной информации. В задачах оптимального распределения ограниченных ресурсов в ситуации с неточными исходными данными возможны следующие подходы при анализе устойчивости: 1. Насколько могут быть изменены значения выбранной группы параметров, чтобы оптимальное решение сохранилось. 2. Найти все решения задачи оптимального распределения ресурсов и области изменения параметров, для которых остаются оптимальными эти решения, если известны интервальные оценки изменения заданной группы параметров. Необходимо отметить, что исследование на устойчивость этого класса задач возникает не только в промышленности и на транспорте, но и при моделировании работы различного рода информационных систем при планировании обработки большого объема информационных документов, вычислительных центов, специализирующихся на ведении и актуализации банков данных, а также вычислительных систем, осуществляющих обработку информации в реальном времени. Таким образом, проблема разработки и исследования моделей оптимального распределения ресурсов на устойчивость носит актуальный характер, ее разрешение позволит существенно повысить эффективность экономико-математического моделирования для пе
речисленного класса производственных и исследовательских объектов. Книга подготовлена при финансовой поддержке органа РФФИ, проект № 16-06-0043а.
Глава 1. ПРОБЛЕМА НЕПОЛНОТЫ ИСХОДНОЙ ИНФОРМАЦИИ В ЗАДАЧАХ ОПТИМАЛЬНОГО РАСПРЕДЕЛЕНИЯ РЕСУРСОВ В ЛОГИСТИЧЕСКИХ СИСТЕМАХ В последнее время все больше выпускается учебной и научной литературы, касающейся использования количественных методов в логистике и управлении цепями поставок. Как правило, в большинстве случаев предлагается использовать детерминированные методы оптимизации для получения управленческих решений. В то же время во многих случаях их применение ограничено вследствие неполноты и неточности исходной информации, используемой в оптимизационных моделях. В данной главе дан обзор существующих подходов для решения подобной проблемы. 1.1. ХАРАКТЕРИСТИКА ЗАДАЧ ОПТИМАЛЬНОГО РАСПРЕДЕЛЕНИЯ РЕСУРСОВ Сложность управления производственными, транспортными и информационными системами приводит к необходимости широкого применения экономико-математических моделей и средств компьютерной техники при планировании развития этих систем. Фундаментом для этого послужило развитие научно-технического прогресса в области вычислительной техники и математических методов, связанных с ее использованием. Этими методами прежде всего являются математическое программирование, исследование операций, методы линейного, нелинейного и целочисленного программирования, системный анализ, теория расписаний, сетевое планирование и управление, теоретическое программирование. Начало применения математических методов в экономике следует отнести к середине прошлого столетия. В нашей же стране использование этих методов связано с созданием в середине 1930-х годов принципов оптимального планирования в работах Л.В. Канторовича и В.В. Новожилова. Широкое практическое использование этих принципов следует отнести к началу 1950-х годов. Одним из крупных организаторов экономико-математических исследований того времени был академик В.С. Немчинов, сыгравший значительную роль в пропаганде и внедрении математи
ческих методов в экономике. В.С. Немчинов активно выступал против жесткой централизации в экономике [25]. Централизация планирования развития народного хозяйства приводит к полному пренебрежению элементарными экономическими законами, господству администрирования и бюрократизации в хозяйственном аппарате, подавлению инициативы в использовании достижений науки и техники. Такая ситуация в большой мере соответствует и высказыванию академика В.Р. Новожилова: «Примитивное понимание взаимоотношений между большими и малыми экономическими системами может создать лишь такую окостенелую механистическую систему, в которой все параметры управления заданы заранее, а вся система залимитирована сверху донизу на каждый момент времени и в каждом пункте... Такая залимитированная система будет тормозить социальный и технический прогресс и под напором реального процесса хозяйственной жизни рано или поздно будет сломана» [18]. Различные методы оптимального управления, получившие развитие в последние десятилетия, играют важную роль в исследовании логистических систем. Это естественно, так как одной из главных задач логистики и управления цепями поставок является разработка методов наилучшего распределения ограниченных ресурсов (трудовых, информационных, материальных, финансовых, производственных) [28]. В настоящее время существует широкий класс задач планирования и управления, которые требуют упорядочения во времени использования ограниченного объема одного или нескольких видов перечисленных выше ресурсов для выполнения заданной совокупности работ. Появление этого класса задач связано с развитием современного производства, необходимостью управлять деятельностью больших коллективов людей, существенным возрастанием роли организационного управления. В различных областях материального производства в сложных, нередко противоречивых условиях приходится принимать решения, которые оказывают существенное влияние на эффективность функционирования промышленных, транспортных и других логистических систем. Эти решения всегда направлены на достижение каких-либо целей и осуществляются в условиях некоторых ограничений. Чаще всего одни и те же цели могут быть достигнуты различными способами, с различными затратами труда и материальных ресурсов. Для того чтобы решить непростую задачу выбора наиболее рационального пути достижения поставленных целей, необходимо привлечение современных научных методов.
В последние десятилетия эти методы известны как методы решения экстремальных дискретных сетевых задач распределения ресурсов. В общих терминах постановка задач этого класса заключается в следующем. Задана некоторая совокупность действий, которые необходимо выполнить. В процессе выполнения каждого действия загружаются или расходуются определенные средства. Чаще всего общего объема средств недостаточно для одновременного выполнения всех действий. Во время выполнения действий средства могут перераспределяться, т.е. способ их использования является управляемой переменной процесса. Средства для выполнения действий обычно называют ресурсами, которые могут быть двух видов: ресурсы типа «материалы», или складируемые ресурсы и ресурсы, нескладируемого вида типа «мощность». К первым относятся топливо, сырье, полуфабрикаты, заготовки, детали и т.д. Складируемые ресурсы непосредственно расходуются в процессе выполнения того или иного действия. Обычно складируемые ресурсы задаются либо общим объемом, либо функцией поставок их во времени. В качестве ресурсов второго типа используются приборы, станки, машины, оборудование, комплексы технических средств и т.п. Ресурсы этого типа, которые также называют ресурсами многоразового использования, не расходуются, а могут перераспределяться по мере выполнения действий. Каждое действие состоит из нескольких элементарных действий, которые называют операциями (работами). Ресурсы, обслуживающие одну операцию, не могут одновременно использоваться на другой. Каждая операция, как правило, имеет свой номер, и ей соответствует вектор, задающий виды и объемы ресурсов, необходимые для ее выполнения. Операция характеризуется длительностью выполнения, которая может зависеть от времени ее начала. Обычно операции могут выполняться не в произвольном порядке, а при заданных технологических ограничениях на последовательность их выполнения. Порядок, в котором можно реализовать работы при соблюдении ограничений на объем потребляемых ресурсов и технологическую последовательность выполнения работ, называют допустимым расписанием. Выбор допустимого расписания выполнения работ происходит из соображений минимизации функции потерь. В качестве функции потерь часто используется время, затраченное на реализацию всего комплекса работ, и среднее взвешенное время завершения выполнения работ.
К наиболее известным областям применения задач указанного типа в управлении проектами относятся следующие: • разработка сложных проектов, в которых принимают участие организации и предприятия различных ведомств, включая научно-исследовательские и опытно-конструкторские работы; • государственные, межведомственные и региональные программы, например охрана окружающей среды, развитие региона, ликвидация последствий экологических катастроф и т.д.; • разработка графиков работы оборудования и выпуска продукции для участков, цехов, предприятий; • строительство промышленных и гражданских объектов, подготовка и проведение крупных организационных мероприятий, (съездов, конференций, кампаний по предупреждению стихийных бедствии и т.д.). В практике управления предлагаемый класс задач относится к системам сетевого планирования и управления (СПУ), которые используются для решения организационных задач планирования выполнения комплекса работ. Первые попытки формализации и исследования сетевых задач относятся к середине 1950-х годов. Из множества зарубежных и отечественных публикаций, например [14, 15], известно, что большинство сетевых задач распределения ресурсов относятся к классу задач, для которых в настоящее время не существует эффективных (полиномиальных) алгоритмов решения. В связи с этим представляют интерес приближенные методы решения этого класса задач. Многие из этих методов имеют полиномиальную оценку сложности, поэтому их важной характеристикой является оценка погрешности по функционалу полученного приближенного решения. Для точного решения экстремальных сетевых задач В.С. Михалевичем был предложен метод последовательного анализа вариантов с оценкой трудоемкости алгоритмов в среднем. Этот метод хорошо зарекомендовал себя при решении практических задач. Ряд общих схем (метод погружения) был предложен в работах В.А. Емеличева [12]. Теория статистических эффективных алгоритмов была в значительной мере создана и обоснована в работах Э.Х. Гимади [4]. Наиболее перспективным направлением практического решения задач оптимального распределения ресурсов в настоящее время является метод ветвей и границ. Этот метод позволяет решать задачи большой размерности, получая точные или приближенные решения. Качество алгоритмов этого класса существенно зависит от того, насколько эффективно вычисляются нижние и верхние оценки (границы) решения.
В последнее время методы сетевого и календарного планирования все шире применяются в производственной логистике в задачах оперативного планирования загрузки металлорежущих станков. Как отмечено в [17], критерием загрузки станков в этом случае являются следующие показатели: соблюдение директивно заданных сроков изготовления деталей; минимизация времени изготовления заданного набора деталей; обеспечение комплектного выпуска деталей. Учитывая многокритериальность и большие размерности реальных задач составления расписания работы оборудования, их решение во многих случаях получают приближенными методами. Рассматриваемый в работе комплекс задач оптимального распределения ресурсов применим при планировании работы промышленных и транспортных предприятий. Одни из этих моделей отражают деятельность предприятия на короткий интервал времени (распределение ресурсов при выполнении комплекса работ и конвейерные системы), другие — на период год и более (задача выбора оптимального варианта производственной деятельности предприятия). Последний тип моделей приобретает большое значение при работе промышленных предприятий в условиях рыночной среды с учетом ограничений на все виды материальных, трудовых, производственных и финансовых ресурсов. Одним из основных критериев оптимальности в условиях экономической самостоятельности предприятия является максимизация его прибыли. В книге рассмотрена задача выбора оптимальной производственной программы предприятия при ограничениях на перечисленные виды ресурсов, а также ограничениях на объемы выпускаемых изделий с учетом сформированного портфеля заказов по каждому виду изделий. Учитывая прогнозный характер цен на выпускаемую продукцию и цен на используемые материальные ресурсы, рассмотрены задачи вычисления интервалов устойчивости по решению и по функционалу при изменении этих показателей. В книге исследуются также проблемы распределения ресурсов в конвейерных системах обработки заявок, которые характеризуются динамическим характером поступления заявок на вход системы обработки. Весь цикл обработки заявок обычно определяется некоторым орграфом, который отражает последовательность обработки заявок на технологических операциях. Задача оптимального распределения ресурсов (оборудования, станков, транспортных средств) в подобных системах заключается в задании такого графика работы каждой единицы ресурса, чтобы принимали оптимальное значение
К покупке доступен более свежий выпуск
Перейти