Термодинамика, кинетика и расчеты металлургических процессов
Покупка
Тематика:
Металлургия. Литейное производство
Издательство:
Издательский Дом НИТУ «МИСиС»
Авторы:
Падерин Сергей Никитович, Рыжонков Дмитрий Иванович, Серов Геннадий Владимирович, Jalkanen H., Holappa L., Heikinheimo E.
Год издания: 2010
Кол-во страниц: 235
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Магистратура
ISBN: 978-5-87623-312-7
Артикул: 754178.01.99
Учебное издание предназначено для студентов, обучающихся по направлениям «Металлургия» и «Физическое материаловедение», магистрантов и аспирантов. Great advances have taken place in metallurgical processes during the past several decades. Modern, energy saving iron- and steel making or direct reduction technologies as well as copper and other nonferrous metals production are some examples of the recent progress. Energy and environmental issues have been generally considered as the main driving forces for this development. It is, however, clear that the key factor for the progress has been better knowledge of the basic phenomena in the processes. It means both thermodynamic bases of the prevailing phases and the reactions as well as chemical kinetics and transport phenomena in the reaction system, i.e. transport of heat, mass and momentum. All these are needed to create a representative model or a series of submodels to describe and to simulate the process. This book is mostly directed to thermochemical and thermodynamic properties of phases and reactions. However, in some parts also structure of phases e.g. slags are discussed as well kinetic and mass transport phenomena. This book was written as a joint project of professors at National University of Science and Technology «MISIS» and at Helsinki University of Technology (HUT). It is purpose is to be a general text book for undergraduate or postgraduate students who ha ve metallurgy as their main subject. It is also suitable for self-studying as it has in each chapter, first a fairly thorough theoretical description of the problem followed by calculation examples and plenty of working examples and control questions.
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Магистратура
- 22.04.01: Материаловедение и технологии материалов
- 22.04.02: Металлургия
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
Национальный исследовательский технологический университет «МИСиС» Кафедра металлургии стали и ферросплавов Кафедра высокотемпературных процессов, материалов и алмазов С.Н. Падерин H. Jalkanen Д.И. Рыжонков L. Holappa Г.В. Серов E. Heikinheimo THERMODYNAMICS, KINETICS AND CALCULATIONS on METALLURGICAL PROCESSES ТЕРМОДИНАМИКА, КИНЕТИКА И РАСЧЕТЫ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ Допущено учебно-методическим объединением по образованию в области металлургии в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению 150100 – Металлургия Москва Издательский Дом МИСиС 2010
УДК 669.04.997 Т35 Р е ц е н з е н т д-р техн. наук, проф. Г.Н. Еланский Издание на английском языке Термодинамика, кинетика и расчеты металлургических процессов / Т35 Падерин С.Н., Рыжонков Д.И., Серов Г.В., Jalkanen H., Holappa L., Heikinheimo E. – М.: Изд. Дом МИСиС, 2010. – 235 с. ISBN 978-5-87623-312-7 Учебное издание предназначено для студентов, обучающихся по направлениям «Металлургия» и «Физическое материаловедение», магистрантов и аспирантов. Great advances have taken place in metallurgical processes during the past several decades. Modern, energy saving iron- and steel making or direct reduction technologies as well as copper and other nonferrous metals production are some examples of the recent progress. Energy and environmental issues have been generally considered as the main driving forces for this development. It is, however, clear that the key factor for the progress has been better knowledge of the basic phenomena in the processes. It means both thermodynamic bases of the prevailing phases and the reactions as well as chemical kinetics and transport phenomena in the reaction system, i.e. transport of heat, mass and momentum. All these are needed to create a representative model or a series of submodels to describe and to simulate the process. This book is mostly directed to thermochemical and thermodynamic properties of phases and reactions. However, in some parts also structure of phases e.g. slags are discussed as well kinetic and mass transport phenomena. This book was written as a joint project of professors at National University of Science and Technology «MISIS» and at Helsinki University of Technology (HUT). It is purpose is to be a general text book for undergraduate or postgraduate students who have metallurgy as their main subject. It is also suitable for self-studying as it has in each chapter, first a fairly thorough theoretical description of the problem followed by calculation examples and plenty of working examples and control questions. ISBN 978-5-87623-312-7 © Падерин С.Н., Рыжонков Д.И., Серов Г.В., Jalkanen H., Holappa L., Heikinheimo E., 2010
CONTENTS ПРЕДИСЛОВИЕ.........................................................................................................5 INTRODUCTION ........................................................................................................6 1.THERMOCHEMISTRY. SHORT BASIS OF CALCULATION OF ENERGY BALANCES .................................................................................................................7 2. CHEMICAL THERMODYNAMICS OF PYROMETALLURGICAL SYSTEMS AND PROCESSES .................................................................................27 2.1 ON THE DRIVING FORCE AND EQUILIBRIUM CONDITIONS FOR CHEMICAL REACTIONS AND SYSTEMS ...........................................................27 2.1.1 Gibbs energy change in an isothermal chemical reaction .................................27 2.1.2 Refractory-steel interaction as an example for chemical system undergoing chemical reaction ........................................................................................................30 2.1.3 Manual calculation of ( complex) reaction equilibria in a gaseous mixture......33 2.1.4 Substitutional and competing chemical reactions..............................................39 2.2 GAS AND SIMPLE GAS-SOLID SYSTEMS ....................................................46 2.2.1 Composition and properties of gas systems most common in metallurgical processes ....................................................................................................................46 2.3 METALLIC SOLUTIONS ..................................................................................49 2.3.1 Standard states and composition co-ordinates for mixtures and solution phases..........................................................................................................................49 2.4 INTERACTIONS IN METAL-GAS-SYSTEMS ................................................54 2.4.1 Copper-sulphur and copper-sulphur-oxygen systems .......................................54 2.4.2 Vacuum refining of blister copper ....................................................................58 2.4.3 Decarburisation of chromium hot metal ...........................................................62 2.5 OXID SOLUTIONS AND METALLURGICAL SLAGS ................................67 2.5.1 Model of perfect ionic solution ( Temkin′s model) ..........................................67 2.5.2 Using the model of a perfect ionic solution in calculation of metallurgical ssag component activities ...........................................................................................75 2.5.3 Polymeric models of silica melts ( Masson′s model ) ......................................84 2.5.4 The model of regular ionic solution ( Kozheurov′s model)..............................99 2.5.5 Thermodynamic model of slag as a phase, which has a shared electron System (Ponomarenko′s vjdel) ................................................................................124 2.5.6 Optical basicity ...............................................................................................129 2.5.7 Electrochemical measurements and calculations in oxide solutions ..............134 2.6 EXAMPLES OF REACTIONS BETWEEN METAL AND SLAG .................148 2.6.1 Deoxidation of steel.........................................................................................148 2.6.2 Desulphurisation .............................................................................................151 2.6.3 Dephosphorisation of steel...............................................................................157 2.7 DISTRIBUTION OF ELEMENTS BETWEEN MOLTEN COPPER OR COPPER MATTE AND SLAG................................................................................160 2.7.1 Copper-slag distribution ..................................................................................160 2.7.2 Distribution of elements between copper matte and slag ...............................164
3. KINETICS OF HETEROGENEOUS METALLURGICAL PROCESSES ........171 3.1 KINETIC EQUATIONS ....................................................................................171 3.1.1 Temperature dependence of rate constant .......................................................171 3.1.2 Kinetic equations for multistage reactions ......................................................174 3.1.3 Conditions of the steady state. The limiting stage ..........................................179 3.1.4 Mass transfer and chemical reaction................................................................180 3.1.5 Simularity criteria and cakculations of the mass transfer coefficients ............182 3.2 KINETICS OF FeO REDUCTION FROM SLAG MELT BY SOLID CARBON .................................................................................................................191 3.3 KINETIC REGULARITIES OF ALLOYED STEEL DECARBURISATION ............................................................................................196 3.3.1 Kinetic models of steel decarburization process and steel oxidizing refining process.........................................................................................................197 3.4 KINETICS OF NITROGEN ABSORPTION BY MELTS FROM LOW TEMPERATURE PLASMA ...................................................................................210 4.NANOMATERIALS.............................................................................................218 NOMENCLATURE ................................................................................................226 DICTIONARY..........................................................................................................227
ПРЕДИСЛОВИЕ Книга "Термодинамика, кинетика и расчеты металлургических процессов" является результатом совместной работы русских и финских ученых и объединяет опыт теоретической подготовки инженеров-металлургов и инженеров-исследователей металлургических процессов в Национальном исследовательском технологическом университете «МИСиС» и в Технологическом университете г. Хельсинки (Финляндия), издание отражает большой прогресс в металлургии за последние два десятилетия. Термодинамика, термохимия и кинетика высокотемпературных процессов составляют теоретическую основу процессов получения и рафинирования металлов. На этой основе книга позволяет освоить проведение теоретического анализа сложных металлургических систем и процессов и их моделирование, формулировать и решать задачи, имеющие практическое значение. В книгу включены теория, модели и расчеты металлургических систем и процессов. В главе "Термохимия" приведены методы расчета энергетических равновесий при высоких температурах. В главе "Химическая термодинамика пирометаллургических систем и процессов" изложены основные теоретические положения равновесий химических реакций в металлургических системах, включающих металлическую, шлаковую и газовую фазы, и решения практических задач. Термодинамика металлических растворов и взаимодействие в системе металл– газ даны на примерах систем медь–сера и медь–сера–кислород, вакуумного рафинирования меди и обезуглероживания хромсодержащего расплава на основе железа. На основе традиционных и новых термодинамических моделей оксидных расплавов применительно к металлургическим шлакам (ионные и полимерные ионные модели силикатных растворов) приведены расчеты активности компонентов основных и кислых шлаков. Представлены методика и результаты электрохимических измерений в оксидных расплавах и шлаках, расчеты активности оксида железа и парциальных мольных величин компонента по результатам электрохимических измерений. Рассмотрены примеры расчетов реакций между металлом и шлаком: раскисление, десульфурация и дефосфорация стали, а также распределение элементов между медью и шлаком, медным штейном и шлаком. В главе "Кинетика гетерогенных металлургических процессов» показано использование теоретических представлений о скоростях сложных процессов взаимодействия в системах металл–шлак–газ, теории и критериев подобия для оценки коэффициентов массопереноса. Рассмотрены кинетические модели процессов обезуглероживания и окислительного рафинирования стали и задачи с использованием модельных уравнений. Изложена кинетическая модель абсорбции азота расплавами на основе железа из низкотемпературной плазмы и выполнены расчеты по уравнениям модели. В главе «Наноматериалы» изложены основные закономерности получения наноматериалов. Приведены примеры расчетов образования зародышей при получении наноразмерных частиц, а также процессов взаимодействия с их участием. Дополнительно к изучению теории и овладению методами физикохимических расчетов книга позволит освоить физико-химическую и металлургическую терминологию на английском языке, на котором издается большая часть периодической литературы, журналов и книг по металлургии. В конце книги имеется англо-русский словарь терминов.
INTRODUCTION The most important applications of thermochemistry and thermodynamics in metallurgy are determination of energy balances and equilibrium properties of whole reaction systems or their crucial parts in order to derive energy and material requirements and optimal thermomechanical and chemical conditions for processes. Real metallurgical (chemical) processes are quite rarely isothermic, i.e. take place at constant temperature. The most common and convenient simplification for thermochemical processes is, however, an isothermal one. Another useful and common approach is isobaric as most metallurgical processes take place at constant pressure, which often is atmospheric. The overwhelmingly most common thermodynamic abstraction for metallurgical processes is to treat them as a single isobaric-isothermic process or as a set of isobaric-isothermic processes. In some cases isochoric i.e. constant volume approach is the most proper one as for processes taking place in closed pressurized chambers (autoclaves) or extremely rapid, explosionlike reactions. Industry processes are either 1) continuous, steady-state processes which means that physicochemical and thermodynamic properties of the reaction system will vary along the length of a reactor but not with time. 2) nonsteady-state, batch processes in which the charge is treated in one stage and its composition and temperature are continuously changing. The final properties of the reaction system are often decisive and it is often enough to carry out the thermochemical and thermodynamic analyses only for the final (and initial if necessary) state of the process. All isobaric or isochoric continuous or batch processes can also be presented as a series of separate nonisothermal thermomechanic and isothermal chemical changes. So, isothermal thermodynamic analysis can be employed almost without restriction to the nonisothermic metallurgical processes. There are available several computer programs for computing thermomechanical effects and equilibrium compositions of high temperature reaction systems. However, as the main task of this book is to help students to understand and apply physical chemistry as a tool for solving problems in metallurgy and material technology the exercises in this book are aimed mainly for manual computing. Theoretical analyses of many metallurgical processes include thermodynamic calculations of interactions in slag-metal liquid systems. Activities of slag components should be calculated previously. Liquid slag is considered as an ionic solution. By comparing it with real liquid slags one can find out the reasons for deviations and create more complex models: polymeric models of silica melts, models of regular ionic solutions for basic and acid slags. These models are discussed below. There are some complicated models of subregular oxide solutions (Lumsden and Shiro-Banya models), which are not given in this book. The study of thermodynamic models allows to approach critically one or another model for calculation of the component activities of a slag, to determine and to specify model parameters on the base of phase diagrams and electrochemical measurements in slags.
Kinetic calculations of metallurgical processes help to reveal mechanics and durations of real processes. It is of great importance to choose correct kinetic equations. In some complicated cases it is convenient to use the criteria of similarity for calculations of mass transfer coefficients. There are examples of kinetic calculations: ferrous oxide reduction from slag melts by solid carbon, kinetic models of steel decarburization process and steel oxidizing refining process and nitrogen absorption by melts from low temperature plasma. 1. THERMOCHEMISTRY 1.1 SHORT BASIS OF CALCULATION OF ENERGY BALANCES Thermochemical analysis and calculations are employed for determining energy balances of processes as whole or of their particular parts or zones in order to derive energy consumption or heat evolution and exchange with the environment (energy loss), etc. Energy balances give basis also for computation of reaction temperatures and temperature distribution in reaction environments. A material system can exchange energy with its environment in the form of heat or work. Energy exchange take place with the expense of kinetic energy of atoms, molecules or lattice, phase transformations (solid state phase transition, melting, evaporation) and chemical reactions (including dissolution, solution formation and chemisorbtion). Energy balances are computed either for isobaric as usual or isochoric conditions. The thermodynamic function employed in thermochemical analysis of chemical reaction systems undergoing isobaric changes is enthalpy, H. For an isochoric process energy exchange equals to the changes in internal energy, U (or E). In Fig. 1.1.1 the principles of an isobaric energy (heat) balance are presented schematically. The basic principle for an energy balance is: energy and matter transferred into the system equals to the sum of the energy and matter transferred from the system in different forms and accumulated inside the system. There are different ways to establish an energy or heat balance even when the basis for all them is basically the same. The method presented here is based on the computation of enthalpy of input and output substances and phases relative to pure elements at some reference temperature for which frequently room temperature is chosen. Another method is to compute the physical heat contents of input and output matter, and the extents of expected chemical reactions and the heats liberated/absorbed in them. Other methods are between these two extremes. As enthalpy and internal energy are state properties there are no other restrictions for construction the heat balance but the same reference is employed for both input, output matter. The enthalpy of a phase relative to pure elements at the reference temperature can be divided in two categories. The isobaric chemical heat content consists of heats of formation of all individual compounds present in the phase as well as heat of formation of solution (heat of mixing). The isobaric physical heat content consists of all heat absorbed in heating up the individual substances to the temperature, concerned including heats absorbed in phase transformations (solid-solid transformation, melting and evaporation).
The quantities readily available for the most common substances are isobaric heat capacities, Cp(T), standard enthalpies of phase transformations and formation of chemical compounds. The corresponding isochoric quantities the isochoric heat capacity function, Cv(T) and the corresponding internal energy changes (ΔU or ΔE) can be readily computed from the isobaric ones. Several data compilations and computer databases give directly the "absolute enthalpies" of elements and compounds i.e. the sum of physical and chemical heat contents which are tabulated relative to elements at room temperature. Data for thermal effects involved in solution formation is very limited except for dilute molten or solid alloys of some common metals. For an isobaric process, in which the heats absorbed or evolved equal to the enthalpy changes we have, accordingly I II ΔHph = Σ(HT - HT°)i = Σni⌡⌠CpidT + ΣniΔtrHi (1.1.1) in which (HT -HT°)i, Cpi and ΔtrHi are the molar heat content, heat capacity and heat of phase transformation of an element, compound or solution, present in the input or output. Accordingly, the first term (I) is the sum of heats absorbed by homogeneous phases in heating, the second term (II) is the sum of isothermal heats absorbed in phase transformations which take place in substances between the reference temperature and the input or output temperatures. Chemical heat is the sum of heats of formation of compounds and solutions they form. I II ΔHch = Σni · ΔfH°i + ΣHmix (1.1.2) The first term on the right side of equation is the sum of heats of formation of all compounds from elements and the second term is the sum of heats of mixing (formation of solution from its components) of all solution phases. Pure energy (Qp) can be transferred into the reactor or reaction zone by conduction and radiation of heat or by direct transformation of other forms of energy into heat inside the reactor - e.g. resistive, inductive, arc, plasma, electron beam heating and other methods to transform electric energy into heat. The accumulation of heat in non steady state processes may take place by direct increase of heat content of substances or with the expense of accumulation of substance in the reactor or reaction zone. The most serious problem in calculation of energy balances for high temperature processes is often the lack of thermochemical data for solutions, heat capacities, heats of mixing, solidification, devitrification etc. Accurate values for heats of mixing for metallurgical solutions are not commonly available. In some cases they are given within the total heat content of the given molten phase measured relative to room temperature or some other reference temperature. As heats of mixing are small relative to heats of reactions they can often be neglected without causing any serious error in heat balance.
The procedure presented in the following examples for computing energy balances of isobaric processes is valid for isochoric ones when enthalpy (H) and isobaric heat capacity (Cp) functions are substituted by internal energy (U or E) and isochoric heat capacity (Cv) functions. Relations between the isobaric and isochoric thermochemical functions are as follows: For chemical reactions ΔrU°T ≈ ΔrH°T - Δng · RT (1.1.3) For heat capacities of condensed substances Cv(T) ≈ Cp(T) (1.1.4) and of perfect (ideal) gases Cv(T) = Cp(T) - R (1.1.5) Δng is the change in number of moles of gaseous reaction components in reaction and R is the common gas constant = 8.314 J·mol-1·K-1 (1.987 cal·mol-1·K-1) The first step in construction of energy balance of a chemical process is to establish a stoichiometric material balance, which gives the amounts, stoichiometric forms of substances and phases in the feed and product of process concerned. There are several ways to construct and compute an energy balance the main differences depending on the choice of reference state for substances and on the forms of available enthalpy data. It is not always reasonable to choose room temperature for the reference temperature and pure elements for the standard state of substances. If the material system includes exceptionally stable compounds, which do not undergo any chemical changes in processes concerned there is no need to compute the standard heats of formation at room temperature as they are equal on input and output side of the energy balance and cancel, accordingly, each other. Methods to establish energy balances for high temperature processes are better visualised in the following examples.
Worked example 1 Adiabatic reaction temperature of titanium carbide synthesis In "combustion synthesis" or "self propagating high-temperature synthesis" (SHS), ceramic materials are synthesised by applying the heat of reaction to generate high temperatures necessary to complete solid-solid reactions. For synthesis the specimens pressed from a mixture of reagent powders are placed into a reaction chamber, which is evacuated or spooled with an inert gas, the specimen is electrically ignited and the combustion reaction goes through the specimen very rapidly. We want to know, what is the theoretical maximum temperature (adiabatic reaction temperature) which can be achieved when titanium carbide is synthesised by SHS from a stoichiometric mixture of titanium powder and carbon black? Synthesis reaction is: Ti(s) + C(s) = TiC(s.l) 1 Adiabatic reaction temperature corresponds to the conditions when the reaction rate is very high relative to the rate of heat transfer from the reaction zone to the environment and all heat evolved is absorbed by the reaction product. If combustion takes place in a mechanically open reactor in which the total pressure equals the atmospheric one this heat equals to the enthalpy of formation of one mole of TiC, ΔfH°298(TiC) The principle of calculation of adiabatic reaction temperature is schematically presented in Fig. 1.1.2 and table 1.1.1 in the form of simple heat balance 0.5 kg of TiC synthesised from a stoichiometric mixture of titanium powder and carbon black. Table 1.1.1. Material & energy (heat) balance. IN: (reagents at room temperature) subst. amount T "phys.heat" "chem.heat" kg mol ni(HT-H298)i niΔfH°298 Ti(s) 0.400 8.34 298 8.34·0 8.34·0 C(s) 0.100 8.34 " 8.34·0 8.34·0 Σ = 0 0 OUT: (products at final temperature Tad) TiC 0.500 8.34 298 8.34(HTad H298) 8.34·ΔfH°298 Σ = 8.34((HTad-H298) + ΔfH°298)) From the material and heat balance we get the following simple equation: