Physicochemical calculations on metallurgical processes
Покупка
Тематика:
Английский язык
Издательство:
Издательский Дом НИТУ «МИСиС»
Год издания: 2000
Кол-во страниц: 207
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Бакалавриат
ISBN: 951-22-4790-9
Артикул: 754176.01.99
Учебное пособие "Физико-химические расчеты металлургических процессов" является результатом совместной работы русских и финских ученых и объединяет опыт теоретической подготовки инженеров-металлургов и инженеров-исследователей металлургических процессов в Московском Государственном Институте Стали и Сплавов (технологическом универсигеге) и в Технологическом Университете г, Хельсинки. Учебное пособие отражает огромный прогресс в металлургии за последние два десятилетия.
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Бакалавриат
- 22.03.02: Металлургия
- ВО - Магистратура
- 22.04.02: Металлургия
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
№259 МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ СТАЛИ и СПЛАВОВ Технологический университет МИСиС Physicochemical calculations on metallurgical processes Москва 2000
№ 259 МИНИСТЕРСТВО ОБПдаГО И ПРОФЕСИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ московский ГОСУДАРСТВЕННЫЙ ИНСШТУТ СТАЛИ И СПЛАВОВ (технологический университет) Одобрено методическны советом института Physicochemical calculations on metallurgical processes Москва 2000
Distrlbixtion: Helsinki University of Technology Laboratory of Metallurgy P. 0. Box 6200 FIN-02015HUT Finland Tel. +358-9-4512756 Fax +358-9-4512798 E-mail: Marja-Litsa.Kivikangas®hutfi О Heikki Jatkanen ISBN 951-22-4790-9 ISSM 1455-2329 PICA-SET OY £spool999
ПРЕДИСЛОВИЕ к московскому изданию книги Учебное пособие "Физико-химические расчеты металлургических процессов" является результатом совместной работы русских и финских ученых и объединяет опыт теоретической подготовки инженеров-металлургов и инженеров-исследователей металлургических процессов в Московском Государственном Институте Стали и Сплавов (технологическом универсигеге) и в Технологическом Университете г, Хельсинки. Учебное пособие отражает огромный прогресс в металлургии за последние два десятилетия. 1 ермодинамика, термохимия и кинетика высокотемпературных процессов составляют теоретическую основу процессов получения и рафинирования металлов. На этой основе книга позволяет освоить проведение теоретического анализа сложных металлургических систем и процессов и их моделирование, формулировать и решать задачи, имеющие практическое значение. В книгу включены теория, модели и расчеты металлургических систем и процессов. В главе "Термохимия" приведены методы расчета энергетических равновесий при высоких температурах. В главе "Химическая термодинамика пиромегаллургических систем и процессов" изложены основные теоретичесгие положения равновесий химических реакций в металлургических системах, включающих металлическую, шлаковую и газовую фазы, и решения практических задач. Термодинамика металлических растворов и взаимодействие в системе металл-газ даны на примерах систем медь-сера и медь-сера-кислрод, вакуумного рафинирования меди и обезуглероживания хромсодержащего расплава на основе железа. На основе традиционных и новейших термодинамических моделей оксвдных расплавов применительно к металлургическим шлакам {ионные и полимерные ионные модели силикатньрс растворов) приведены расчеты активности компонентов основных и кислых шлаков. Представлены методика и результаты элек1рохимических измерений в оксидных расплавах и шлаках, расчеты активности оксида железа и парциальных мольных величин компонента по результатам электрохимических измерений. Рассмотрены примеры расчетов реакций между металлом и шлаком: раскисление, десульфурация и дефосфорация стали, а также распределение элементов между медью и шлаком, медным штейном и шлаком. В главе "Кинетика гетерогенных металлургических процессоов» показано использование теоретических представлений о скоростях сложных процессов взаимодействия в сисгемах металл-шлак-газ, теории и критериев подобия для оценки коэффициентов массопереноса. Рассмотрены кинетические модели процессов обезуглероживания и окислительного рафинирования стали и задачи с использованием модельных уравнений. Изложена кинетическая модель абсорбции азота расплавами на основе железа из низкотемпературной плазмы и выполнены расчеты по уравнениям модели. Книга издана на английском языке, что делает ее полезной и доступной для использования студентами не только России и стран СНГ, но и Финляндии и других стран. Для русских студентов дополнительно к изучению теории и овладению методами физикохимических расчетов книга позволит освоить физико-химическую и металлургическую терминологию на английском языке, на котором издается большая чаеть периодической литературы, журналов и книг по металлургии и материаловедению.
• 3 CONTENTS PREFACE ....5 INTRODUCTION:...; 6 1. THERMOCHEMISTRY 7 1.1 SHORT BASIS OF CALCULATION OF ENERGY BAlJANCES - 7 L2 CALCULATION OF ADIABATIC REACITON TEMPERATURES „ 10 1.3 ENERGY BALANCES OF INDUSTRIAL PROCESSES - 16 2.CEEMICAL THERMODYNAMICS OF PYROMETALLURGICAL SYSTEMS AND PROCESSES .. 28 2.1 ON THE DRIVING FORCE AND EQUILIBRIUM CONDITIONS FOR CHEMICAL REACTIONS AND SYSTEMS 28 2.1.1 Gtbbs energy change in an isothermal chemical reaction 28 2.L2 Refractory'St eel interaction as an example for chemical system undergoing chemical reaction ,.,32 2.L3 Manual calculation of (complex) reaction equilibria in a gaseous mixture. 35 2.1.4 Substitutional and competing chemical reactions 39 2.2 GAS AND SIMPLE GAS-SOLID SYSTEMS „45 2.2.1 Composition and properties of gas systems most common in metallurgical processes 45 23 METALLIC SOLUTIONS. .'. .^48 2.3. ] Standard states and composition co-ordinates for mixtures and solution phases 48 2.4 INTERACTIONS IN META1.-GAS -SYSTEMS... 52 2.4.1 Copper-sulphur and copper-sulphur-oxygen systems.. 52 2.4.2 Vacuum refining of blister copper 55 2.4.3 Decarburisation of chromium hot metal * 58 2.5 OXIDE SOLUTIONS AND METALLURGICAL SLAGS 63 2.5.1 Model of perfect ionic solution (Temkin's model) 63 2.5.2 Usi^g the model of a perfect ionic solution in calculation of metallurgical slag component activities 70 2.5.3 Polymeric models of silica melts (Masson's model) 76 2.5.4 The model of regular ionic solution (Kozheurov's model) 89 2.5.5 Thermodynamic nwdel of slag as a phase, which has a shared electron system (Ponomarenko's model) 114 2.5.6 Optical basicity 118 2.5 J Electrochemical measurements and calculations in oxide solutions 122 2.6 EXAMPLES OF REACTIONS BETWEEN METAL AND SLAG « 134 2.6.1 Deoxidation of steel „ 134 2.6.2 DesulphuHsation 136 2.6.3 Dephosphorisation of steel 141 2.7 DISTRIBUTION OF ELEMENTS BETWEEN MOLTEN COPPER OR COPPER MATTE AND SLAG , 145 2.7.1 Copper-slag distribution 145 2.7.2 Distribution of elements between copper matte and slag 148
3. KINETICS OF HETEROGENEOUS METALLURGICAL PROCESSES 155 3.1 KINETIC EQUATIONS. „ 155 3,IJ Temperature dependence of the rate constant. »..* 155 $J.2 Kinetic equtuions for multistage reactions. 157 3JJ Conditions of the steady state. The limiting stage, 162 3 J,4 Mass transfer and chemical reaction 163 3,L5 Similarity criteria and calculations of the mass transfer coefficients 165 3.2 KINETICS OFFEO REDUCTION FROM SLAG MELT BY SOLID CARBON 273 13 KINETIC REGULARITIES OF ALLOYED STEEL DECARBURISATION 177 3.3.1 Kinetic models of steel decarburisation process and steel oxidising refining process 173 3.4 KINETICS OF NITROGEN ABSORPTION BY MELTS FROM LOW TEMPERATURE PLASMA.. „ 188 4. NOMENCLATURE 195
PREFACE Great advances have taken place in metallurgical processes during the past two decades. Modem, energy saving blast furnace technology or emerging direct reduction technologies for iron production, as well as the breaJcthrough of flash and in-bath smelting processes in copper, lead or other non-ferrous metals production are some examples of the recent progress. Energy and environmental issues have been generally considered as the main driving forces for this development. It is. however, clear that the key factor for the progress has been better knowledge of the basic phenomena in the processes. This means both thermodynamic basis of the phases present and the reactions as well as chemical kinetics and transport phenomena in the reaction system, i, e. transport of heat, mass and momentum. All these are needed to create a representative model or a scries of submodels to describe and to simulate the process. This book is mostly directed to thermochemical and thermodynamic properties of phases and reactions. However, in some parts also structure of phases, e. g. of slags, is discussed along with kinetic and mass transport phenomena. This book was written as a joint project by the Laboratory of Metallurgy at Helsinki University of Technology (HUT) and the Chair of Theory of Metallurgical Processes at Moscow Steel and Alloys Institute (MlSiS) during the 90*s. Its purpose is to be a general textbook for undergraduate or graduate students who have metallurgy or materials science as their main subject. It is also suitable for self-studies as it has, in each chapter, first a fairly thorough theoretical description of the problem, followed by calculation examples and plenty of working examples and control questions. Autumn 1999 The authors
-6 INTRODUCTIQN The most important applications of thermochemistry and thermodynamics in metallurgy are determination of energy balances and equilibrium properties of whole reaction systems or their crucial parts in order to derive energy and material requirements and optimal thermomechanicai and chemical conditions for processes. Real metallurgical (chemical) processes are quite rarely isothermic, i.e. take place at constant temperature. The most conunon and convenient simplification for thermochemical processes is, however, an isothermal one. Another useful and conunon approach is isobaric as most metallurgical processes take place at constant pressure, which often is atmospheric. The overwhelmingly most common thermodynamic abstraction for metallurgical processes is to treat them as a single isobaric-isothermic process or as a set of isobaric-isothermic processes. In some cases isochoric i.e. constant volume approach is the most proper one as for processes taking place in closed pressurised chambers (autoclaves) or extremely rapid, explosionlike reactions. Industry processes are cither 1) continuous, steady-state processes which means that physicochemical and thermodynamic properties of the reaction system will vary along the length of a reactor but not with time. 2) non-steady state, batch processes in which the charge is treated in one stage and its composition and temperature are continuously changing. The final properties of the reaction system are often decisive and it is often enough to carry out the thermochemical and thermodynamic analyses only for the final (and initial if necessary) state of the process. All isobaric or isochoric continuous or batch processes can also be presented as a series of separate nonisothermal thermomechanic and isothermal chemical changes. So, isothermal thermodynamic analysis can be employed almost without restriction to the nonisothermic metallurgical processes. There are available several computer programs for computing thermomechanicai effects and equilibrium compositions of high temperature reaction systems. However, as the main task of this book is to help students to understand and apply physical chemistry as a tool for solving problems in metallurgy and material technology the exercises in this book are aimed mainly for manual computing. Theoretical analyses of many metallurgical processes include thermodynamic calculations of interactions in slag-metal liquid systems. Activities of slag components should be calculated previously. Liquid slag is considered as an ionic solution. By comparing it with real liquid slags one can find out the reasons for deviations and create more complex models: polymeric models of silica melts, models of regular ionic solutions for basic and acid slags. These models are discussed below. There are some complicated models of subregular oxide solutions (Lumsden and Shiro-Baaya models), which are not given in this book. The study of thermodynamic models allows us to approach critically one or another model for calculation of the component activities of a slag, to determine and to specify model parameters on the base of phase diagrams and electrochemical measurements in slags.
. 7 Kinetic calculations of metallurgical processes help to reveal mechanisms and duration of real processes. It is of great importance to choose correct kinetic equations. Ь some complicated cases it is convenient to use the criteria of similarity for calculations of mass transfer coefficients. Therc are examples of kinetic calculations: fem)us oxide reduction from ^lag melts by solid carbon» kinetic models of steel decarburisation process and steel oxidising refining process and nitrogen absorpti№ by melts from low temperature plasma. 1, THERMOCHEMISTRY 1.1 SHORT BASIS OF CALCULATION OF ENERGY BALANCES Thermochemical analysis and calculations are employed for determining energy balances of processes as whole or of their particular parts or zones in order to derive energy consumption or heat evolution and exchange with the environment (energy loss), etc. Energy balances give basis also for computation of reaction temperatures and temperature distribution in reaction environments. A material system can exchange energy with its environment in the form of heat or work. Energy exchange takes place with the expense of kinetic energy of atoms, molecules or lattice, phase transformations (solid state phase transition, melting, evaporation) and chemical reactions (including dissolution, solution formation and chemisoфtion). Energy balances are computed either for isobaric as usual or isochoric conditions. The thermodynamic function employed in thermochemical analysis of chemical reaction systems undergoing isobaric changes is enthalpy, H. For an isochoric process energy exchange equals to the changes in internal energy, U (or E). In Fig. 1ЛЛ the principles of an isobaric energy (heat) balance are presented schematically. The basic principle for an energy balance is: energy and matter transferred into the system equals to the sum of the energy and matter transferred from the system in different forms and accumulated inside the system. There arc different ways to establish an energy or heat balance even when the basis for all them is basically the same. The method presented here is based on the computation of enthalpy of input and output substances and phases relative to pure elements at some reference temperature for which frequently room temperature is chosen. Another method is to compute the physical heat contents of input and output matter, and the extents of expected chemicd reactions and the heat liberated/absorbed in them. Other methods are between these two extremes. As enthalpy and internal energy are state properties there are no other restrictions for construction the hett balance but the same reference is employed for both input and output matter. The enthalpy of a phase relative to pure elements at the reference tenфeratUIe can be divided in two categories. The isobaric chemical heat content consists of heats of formation of all individual compounds present in the '^hase as well as heat of formation of solution (heat of mixing). The isobaric physical heat content consists of all heat absorbed in heating up the individual substances to the temperature, concerMd including heats absorbed in phase transformations (solid-solid transfoimationt melting and evaporation).
REACTOR OR REACTION ZONE UNDER CONStDERATION Hph Hch Q . HEAT BALANCE FOR AN ISOBARIC PROCESS: Hph + H5, + Qp- (H.CC + H;S + H ^ + Qi) = 0 fum of "physicar heat» or heat content» of Input (") or output f"^ subslancee or phase»; •um of corresponding *сНвт1саГ heats or energies i.e. heats of formatton of compounds or phases; 'pure' energy transferred Into the reactor or reaction zone through heat conduction or by trenaformtng electric energy Into hest; heat accumulated In the system during heat baiance peHod by Increasing of heat cont&nt (temperature) of substances or with eccomulation of substances inside the mador or reaction 2one considered; : heat loss from the reactor or reaction zone by conduction or radiation during the bafance period. Reference state for computing enthaipy of charge and products consists of pure elements under atmospheric pressure at a given reference Lemperature T (usually room temperature 298K). Fig. 1.1.1. Principles of energy (heat) balances. The quantities readily available for the most common substances are isobaric heat capacities, Cp(T), standard enthalpies of phase transformations and formation of chemical compounds. The corresponding isochoric quantities the isochoric heat capacity function, Су(Т) and the corresponding internal energy changes (AU or ДЕ) can be readily computed from the isobaric ones. Several data compilations and computer databases give directly the "absolute enthalpies" of elements and compounds ix. the sum of physical and chemical heat contents which are tabulated relative to elements at room temperature. Data for thermal effects involved in solution formation is very limited except for dilute molten or solid alloys of some common metals. For an isobaric process, in which the heats absorbed or evolved equal to the enthalpy changes we have, accordingly I П AHph = XCHT - HT.)i = InJCpidT + Zn-A^H^ (1ЛЛ) in which (Hj -H-pX, Cp^ and AjjHj are the molar heat content, heat capacity and heat of phase transformation of an element, compound or solution, present in the input or output. Accordingly, the first term (I) is the sum of heats absorbed by homogeneous phases in heating, the second term (П) is the sum of isothermal heats absorbed in