Процессы и аппараты очистки воды в металлургии
Покупка
Тематика:
Металлургия. Литейное производство
Издательство:
Издательский Дом НИТУ «МИСиС»
Год издания: 2007
Кол-во страниц: 138
Дополнительно
Пособие «Процессы и аппараты очистки воды в металлургии» является продолжением курса «Теоретические основы защиты окружающей среды». В нем приведены описание процессов и конструкций аппаратов очистки сточных вод в металлургии, технологические схемы и методы их расчета. Пособие предназначено для самостоятельного выполнения расчетов сооружений и аппаратов очистки сточных вод по курсам «Процессы и аппараты защиты окружающей среды» и «Защита водного и воздушного бассейнов» студентами, обучающимися по специальностям 280202 «Инженерная защита окружающей среды в металлургии», 280201 «Безопасность жизнедеятельности», а также специальностям направления 656500 «Металлургия». Пособие может быть использовано при выполнении домашних заданий, курсового идипломного проектирования по разделу «Охрана окружающей среды».
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Бакалавриат
- 00.03.01: Безопасность жизнедеятельности
- 22.03.01: Материаловедение и технологии материалов
- 22.03.02: Металлургия
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ № 293 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ СТАЛИ и СПЛАВОВ Технологический университет МИСиС Кафедра теплофизики и экологии металлургического производства А.Н. Белевцев М.А. Белевцев Л.А. Мирошкина Процессы и аппараты очистки воды в металлургии Учебное пособие Рекомендовано редакционно-издательским советом университета Москва Издательство «УЧЕБА» 200 7
УДК 628.33/35 Б43 Рецензент канд. техн, наук, доц. Т.И. Чибисова Белевцев А.Н., Белевцев М.А., Мирошкина Л.А. Б43 Процессы и аппараты очистки воды в металлургии: Учеб, пособие. - М.: МИСиС, 2007. - 138 с. Пособие «Процессы и аппараты очистки воды в металлургии» является продолжением курса «Теоретические основы защиты окружающей среды». В нем приведены описание процессов и конструкций аппаратов очистки сточных вод в металлургии, технологические схемы и методы их расчета. Пособие предназначено для самостоятельного выполнения расчетов сооружений и аппаратов очистки сточных вод по курсам «Процессы и аппараты защиты окружающей среды» и «Защита водного и воздушного бассейнов» студентами, обучающимися по специальностям 280202 «Инженерная защита окружающей среды в металлургии», 280201 «Безопасность жизнедеятельности», а также специальностям направления 656500 «Металлургия». Пособие может быть использовано при выполнении домашних заданий, курсового и дипломного проектирования по разделу «Охрана окружающей среды». © Московский государственный институт стали и сплавов (технологический университет) (МИСиС), 2007
ОГЛАВЛЕНИЕ Предисловие...............................................5 1. Процессы и аппараты смешения и усреднения сточных вод..6 1.1. Смешивание сточных вод. Смесители..................6 1.2. Процессы и аппараты для усреднения сточных вод (усреднители)..........................................15 2. Процессы и аппараты механической очистки сточных вод..24 2.1. Решетки...........................................24 2.2. Песколовки........................................25 2.3. Процессы отстаивания. Отстойники..................29 2.4. Процессы выделения нерастворимых примесей из сточных вод в гидроциклонах............................50 2.5. Процессы выделения грубодисперсных примесей в центробежном поле. Центрифуги..........................61 2.6. Процессы глубокого удаления механических примесей из сточных вод фильтрованием...........................62 2.7. «Огневой» метод обезвреживания сточных вод........68 3. Процессы и аппараты биохимической очистки сточных вод..69 3.1. Назначение и сущность биохимических методов очистки сточных вод............................................69 3.2. Активный ил и его влияние на процессы биохимической очистки сточных вод....................................71 3.3. Влияние внешних факторов на биохимическую очистку сточных вод............................................72 3.4. Свойства активного ила............................73 3.5. Взаимосвязь химической структуры органических веществ и их биохимического окисления..................75 3.6. Кинетика биохимических процессов..................80 3.7. Аппараты и сооружения биохимической очистки сточных вод............................................82 3.8. Анаэробное сбраживание осадков сточных вод........88 3.9. Технологические схемы биологической очистки сточных вод............................................88 4. Методы и аппараты химической очистки сточных вод......89 4.1. Реагентные методы обработки сточных вод...........89 4.2. Деструктивные методы очистки сточных вод..........97 4.3. Процессы восстановления в технологии очистки сточных вод...........................................107 3
5. Физико-химические методы очистки сточных вод.......109 5.1. Ионообменные методы очистки сточных вод........109 5.2. Электрохимические методы очистки сточных вод...117 5.3. Использование мембранных технологий в процессах очистки сточных вод.................................125 Библиографический список..............................136 Приложение............................................137 4
ПРЕДИСЛОВИЕ Сточные воды промышленных предприятий чрезвычайно разнообразны по составу, расходам, свойствам и требуют применения специфических методов, технологий и аппаратов для их очистки от целого ряда токсичных, биорезистентных органических и минеральных примесей перед отведением их в водные объекты. При выборе вариантов проектирования систем водопользования и сооружений очистки сточных вод специалистам необходимы глубокие знания для выбора оптимальных, наиболее рациональных технических решений и их эколого-экономического обоснования. В пособии изложены теоретические и практические материалы курса защиты объектов водного бассейна от загрязнения сточными водами, освещены вопросы влияния сброса сточных вод в водные объекты на их экологическое состояние, определения условий сброса сточных вод в водоемы и необходимой степени их разбавления и очистки с целью предотвращения отрицательного воздействия на экологическое равновесие в них, ассимилирующую и самоочищаю-щую способность; классификации сточных вод и загрязняющих их примесей. 5
1. ПРОЦЕССЫ И АППАРАТЫ СМЕШЕНИЯ И УСРЕДНЕНИЯ СТОЧНЫХ ВОД Обычно количество и качественный состав производственных сточных вод крайне непостоянны и изменяются во времени в широких пределах. Это обусловливается ходом технологических процессов и неравномерностью использования воды на производственные нужды. Непостоянство расхода и состава сточных вод крайне осложняет канализирование промышленных предприятий и особенно работу очистных сооружений. Так, при колебаниях притока сточных вод нарушается работа отстойников и фильтров, при колебаниях состава сточных вод снижается эффективность нейтрализационных, окислительных установок и других сооружений механической, химической, физико-химической очистки, снижается эффективность работы автоматических систем контроля и управления процессами очистки. Поэтому на практике сточные воды перед очистными сооружениями необходимо усреднять как по расходу, так и по концентрации загрязняющих примесей. Достигается это перемешиванием стоков различного состава в специальных резервуарах - усреднителях или в смесителях, либо введением в отдельные локальные потоки реагентов (например, нейтрализацией отработанных травильных растворов перед подачей их в промывные воды для последующей совместной очистки от соединений тяжелых металлов). Введенный раствор реагентов при этом необходимо тщательно перемешивать со сточной водой. В первом случае применяются различные усреднители, во втором - смесители. 1.1. Смешивание сточных вод. Смесители В качестве смесителей наибольшее распространение получили относительно простые аппараты - лотки с перегородками: ершовые смесители и смесители с дырчатыми перегородками (рис. 1.1), реже перепадные колодцы, механические мешалки и т.п. Ершовый смеситель - это лоток с несколькими неполными перегородками, расположенными под определенным углом к стенкам лотка и потоку проходящей сточной жидкости: 45, 90 или 135°, отходящими поочередно от противоположных стенок лотка и не доходящими до противоположной стенки. При прохождении воды через вертикальные щели между перегородками и стенками лотка изменяется скорость ее движения, которое переходит из ламинарного в турбулентное. При этом возникают вихри с вертикальной осью вращения. Чем больше скорость движения жидкости в щелях, тем интенсивнее перемешивание, но тем больше и потери напора. 6
Рис. 1.1. Схемы смесителей: а - типа «ерш»; б - дырчатый: 7 - трубы для подачи воды; 2 - трубы для подачи реагента; 3 - лотки для отвода воды; 4 - дырчатые перегородки; 5 - струенаправляющие перегородки Обычно скорость движения воды в щелях ершовых смесителей принимается 0,5... 1 м/с. Дырчатые перегородки в смесителях устанавливаются на расстоянии 0,5 м друг от друга. Обычно в смесителях делают 2-3 перегородки с отверстиями диаметром 20... 40 мм при небольших расходах воды и до 100 мм в больших смесителях. При введении нескольких реагентов устанавливают 3-4 перегородки. Скорость движения воды в отверстиях - 1... 1,2 м/с. Смесители с дырчатыми перегородками обеспечивают более полное перемешивание, чем ершовые. Расчет ершовых смесителей сводится к определению ширины щелей (расстояний между торцом перегородки и противоположной стенкой) и потерь напора в них. При скорости движения воды в щелях v (м/с) потери напора в одной щели (h, м) составляют: h = ^-v¹l2g, (1.1) где 5, - эмпирический коэффициент, зависящий от положения перегородок: при угле а = 45° по отношению к направлению потока и продольным стенкам лотка = 2,5; при угле а = 90° с = 3: при угле а = 135° ^ = 3,5. 7
Глубину потока Н, м, в отводящем лотке за смесителем принимают исходя из местных условий. Она зависит от удельного расхода сточных вод q, м³/с, уклона лотка и его ширины В, м: H=q/B-vA, (1.2) где V] - скорость потока в лотке за смесителем, обычно принимают 0,4...0,6 м/с. Глубина потока перед первой (от конца) перегородкой h₃ = Н + й; перед второй - h₂ = Н + 2й; перед третьей - h₃ = Н + 3h и т. д. Тогда при одинаковой скорости воды во всех щелях ширина каждой из них может быть определена из уравнений b\= q I v (Н + h\, Л b₂= q/v (Н + 2h); V (1.3) b₃= q / v (Н + 3h), I где bi, b₂, Ь₃ и т.д. - ширина щелей, м. При узких лотках (до 0,5... 0,6 м) ширина смесителя (Ьс) делается в 1,5-2 раза больше ширины лотка за смесителем, при широких лотках - равной ей. Потери напора в отверстиях каждой перегородки дырчатых смесителей могут быть определены по формуле 2 /⁷ ⁼ аг²^’ к где Vo - скорость воды в отверстиях перегородки (обычно 1... 1,2 м/с); к - коэффициент расхода, в зависимости от толщины перегородки принимается от 0,62 до 0,7. Число отверстий в каждой перегородке зависит от принятого их диаметра d₀, м, и расхода сточной воды: 4 <7 /2 П=— Vq4 • л Задавшись числом отверстий по вертикали (пв) и по горизонтали (щ): п = пв- пт, и расстояниями между отверстиями по вертикали (5В) и по горизонтали (5Г) в последней перегородке, определяют ширину смесителя: Ьс = пт • Sᵣ. Обычно .S', и .S'B принимают равными l,5-2,5J₀, расстояния между перегородками / = 1,5 Ьс. 8
Ершовый и дырчатый смесители в эксплуатации неудобно применять при смешении сточных вод, содержащих большое количество грубодисперсных примесей (ГДП), а также при смешении сточных вод и реагентов в виде суспензий, например известкового молока, вследствие оседания взвешенных частиц в отсеках смесителей. Более надежны смесители вихревого типа (рис. 1.2). Перемешивание в них осуществляется за счет вихревых потоков, возникающих при изменении скоростей движения воды, обусловленных изменением сечений. Скорость воды при входе в конусную часть Vi принимается 1 м/с, в цилиндрической части скорость г₂ не должна превышать 0,3 м/с. Время смешения t зависит от качества реагентов (извести): при высоком качестве (СаО = 95 %) t = 1 мин, при среднем (СаО ~ 50 %) t составляет около 1,5 мин, низком (СаО = 30-40 %) t = 2-2,5 мин. Угол конуса равен 30°...45°. Рис. 1.2. Вертикальный смеситель вихревого типа: а - с отводом воды лотком с затопленными отверстиями; б - с отводом воды затопленной воронкой: 1 - подвод воды; 2 - отвод воды; 3 - спуск; 4 - щиток для защиты от образования воздушной воронки; Н - расчетная высота смесителя 9
Необходимый объем смесителя, м: W=Q-t/60, (1.4) где Q - общий расход сточных вод, м³/ч. Сечение входного отверстия конуса, м²: f=q/vₓ. (1.5) Сечение цилиндрической части, м²: /₂ = <?/р₂- (1.6) Недостатки вертикальных смесителей вихревого типа - в больших потерях напора, снижении полноты перемешивания при ограничении скорости движения воды в щелях и входном отверстии, необходимом для уменьшения потерь напора; в снижении эффекта смешения и колебаний потерь напора при изменении расхода воды; громоздкости конструкции и больших площадях, занимаемых смесителями при большом расходе воды. Эти недостатки отсутствуют у смесителей с механическим перемешиванием, в которых смешение воды с реагентами осуществляется лопастными или пропеллерными мешалками. Конструктивных разновидностей механических смесителей много, и все они имеют различные КПД. Рис. 1.3. Схемы смесителей с мешалками: а - лопастной; б - пропеллерной: 1 - подача сточной жидкости; 2 - ввод реагента; 3 - электродвигатель; 4 - редуктор; 5 - лопасти мешалки; б - пропеллер; 7 - кожух; 8 - отбойник; 9 - выпуск сточной жидкости Использование механических смесителей удобно при введении последовательно нескольких реагентов и при резких колебаниях 10