Физические основы производства. Термодинамические расчеты высокотемпературных систем и процессов, фазовые превращения
Покупка
Тематика:
Металлургия. Литейное производство
Издательство:
Издательский Дом НИТУ «МИСиС»
Год издания: 2016
Кол-во страниц: 83
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Бакалавриат
ISBN: 978-5-87623-855-9
Артикул: 752060.01.99
Кратко изложена теория и представлены задачи с примерами решения, использующие законы и представления молекулярной физики и термодинамики. Задачи имеют прикладной характер. Приведены расчеты состава и свойств газовых атмосфер, низкотемпературной плазмы, диссоциации и оценки прочности соединений, расчеты восстановительных процессов. Рассмотрены фазовые равновесия и превращения с использованием фазовых диаграмм. Предназначен для студентов бакалавриата, обучающихся по направлениям 38.03.01, 38.03.02, 38.03.05. Может быть полезен студентам направлений 22.03.01 и 22.04.01 «Материаловедение и технологии материалов».
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Бакалавриат
- 22.03.01: Материаловедение и технологии материалов
- ВО - Магистратура
- 22.04.01: Материаловедение и технологии материалов
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС» № 2307 Кафедра функциональных наносистем и высокотемпературных материалов Г.В. Серов Е.Н. Сидорова Физические основы производства Термодинамические расчеты высокотемпературных систем и процессов, фазовые превращения Практикум Рекомендовано редакционно-издательским советом университета Москва 2016
УДК 669.04.997 С32 Р е ц е н з е н т д-р техн. наук, проф. С.Н. Падерин Серов Г.В. С32 Физические основы производства. Термодинамические расчеты высокотемпературных систем и процессов, фазовые превращения : практикум / Г.В. Серов, Е.Н. Сидорова – М. : Изд. Дом МИСиС, 2016. – 83 с. ISBN 978-5-87623-855-9 Кратко изложена теория и представлены задачи с примерами решения, использующие законы и представления молекулярной физики и термодинамики. Задачи имеют прикладной характер. Приведены расчеты состава и свойств газовых атмосфер, низкотемпературной плазмы, диссоциации и оценки прочности соединений, расчеты восстановительных процессов. Рассмотрены фазовые равновесия и превращения с использованием фазовых диаграмм. Предназначен для студентов бакалавриата, обучающихся по направлениям 38.03.01, 38.03.02, 38.03.05. Может быть полезен студентам направлений 22.03.01 и 22.04.01 «Материаловедение и технологии материалов». УДК 669.04.997 ISBN 978-5-87623-855-9 Г.В. Серов, Е.Н. Сидорова, 2016 НИТУ «МИСиС», 2016
СОДЕРЖАНИЕ 1. Физические величины. Их размерности и обозначения .................. 5 2. Сведения из термодинамики ............................................................. 12 2.1. Основные понятия и определения ............................................. 12 2.2. Первый закон термодинамики .................................................... 13 2.3. Термохимия .................................................................................. 15 2.4. Второй закон термодинамики. Энтропия .................................. 16 2.5. Энергия Гиббса и энергия Гельмгольца .................................... 17 3. Состав и свойства газовой фазы ........................................................ 20 3.1. Идеальный газ .............................................................................. 20 3.2. Уравнение состояния идеального газа ....................................... 21 3.3. Реальные газы .............................................................................. 23 3.4. Закон Дальтона ............................................................................ 24 3.5. Реакции горения газов. Окислительно-восстановительные свойства газовой фазы ........................................................................ 25 3.5.1. Теоретическое введение ....................................................... 25 3.5.2. Примеры решения задач ...................................................... 30 3.5.3. Задачи для самостоятельного решения .............................. 32 3.6. Состав и свойства газовой фазы в присутствии углерода ....... 33 3.6.1. Теоретическое введение ....................................................... 33 3.6.2. Примеры решения задач ...................................................... 34 3.6.3. Задачи для самостоятельного решения .............................. 36 3.7. Оценка равновесных концентраций компонентов низкотемпературной плазмы ............................................................. 37 3.7.1. Теоретическое введение ....................................................... 37 3.7.2. Примеры решения задач ...................................................... 40 3.7.3. Задачи для самостоятельного решения .............................. 41 4. Закономерности образования и диссоциации соединений. Количественные характеристики прочности оксидов ........................ 43 4.1. Теоретическое введение .............................................................. 43 4.2. Примеры решения задач ............................................................. 47 4.3. Задачи для самостоятельного решения ..................................... 50 5. Восстановительные процессы ........................................................... 52 5.1. Термодинамические основы процессов .................................... 52 5.2. Металлотермическое восстановление ....................................... 52 5.3. Углетермическое восстановление .............................................. 53 5.4. Восстановление металлов газами ............................................... 54 5.5. Примеры решения задач ............................................................. 55
5.6. Задачи для самостоятельного решения ..................................... 58 6. Фазовые равновесия и превращения ................................................. 60 6.1. Правило фаз Гиббса..................................................................... 60 6.2. Фазовые превращения ................................................................. 60 6.3. Однокомпонентные фазовые диаграммы .................................. 62 6.4. Фазовые диаграммы двухкомпонентных систем...................... 64 6.4.1. Фазовая диаграмма для систем с неограниченной растворимостью в жидком состоянии и отсутствием растворимости в твердом (первый тип) ........................................ 65 6.4.2. Фазовая диаграмма для систем с прочным химическим соединением (второй тип) .............................................................. 68 6.4.3. Фазовая диаграмма для систем с неограниченной растворимостью в жидком и твердом состояниях (третий тип) ..................................................................................... 69 6.5. Задачи для самостоятельного решения ..................................... 70 6.6. Фазовая диаграмма Fe–O ............................................................ 75 Библиографический список ................................................................... 80 Приложение. Изменение энергии Гиббса в реакциях образования оксидов из компонентов в стандартных состояниях ........................... 81
1. ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ. ИХ РАЗМЕРНОСТИ И ОБОЗНАЧЕНИЯ Основные единицы физических величин В Международной системе единиц (СИ) в качестве основных выбраны семь единиц, приведенных в табл. 1.1. Таблица 1.1 Основные единицы физических величин системы СИ Величина, размерность Единица Сокращенное обозначение русское международное Длина L метр м m Масса M килограмм кг kg Время T секунда с s Сила электрического тока I ампер А A Термодинамическая температура кельвин К K Количество вещества N моль моль mol Сила света J кандела кд cd Кратные и дольные единицы Кратные единицы – единицы, в целое число раз превышающие системные или внесистемные единицы. Дольные единицы в целое число раз меньше системной или внесистемной единицы. Наиболее удобны для применения десятичные кратные и дольные единицы. Наименования десятичных кратных и дольных единиц образуются присоединением приставок, представленных в табл. 1.2, к наименованиям исходных единиц. Таблица 1.2 Множители и приставки для образования десятичных кратных и дольных единиц Кратность и дольность Приставка Сокращенное обозначение русское международное 1015 пэта П P 1012 тера Т T 109 гига Г G 106 мега М M 103 кило к k 102 гекто г h 101 дека да da
Окончание табл. 1.2 10–1 деци д d 10–2 санти с c 10–3 милли м m 10–6 микро мк 10–9 нано н n 10–12 пико п p 10–15 фемто ф f Производные единицы В Международной системе из основных и дополнительных единиц при помощи определенных уравнений образуются производные единицы. В табл. 1.3 приведены производные механических и физических величин, употребляемые в расчетах настоящей дисциплины. Таблица 1.3 Примеры производных единиц системы СИ Величина Размерность Определяющее уравнение Производная единица Наимено– вание Обозначение русское междуна– родное Площадь L2 S = a2 квадратный метр м2 m2 Объем L3 V = a3 кубический метр м3 m3 Скорость LT–1 V = S / t метр в секунду м/с m/s Ускорение LT–2 a = dV / dt метр на секунду в квадрате м/с2 m/s2 Плотность L–3M = m / V килограмм на кубический метр кг/м3 kg/m3 Вязкость динамическая L–1MT–1 d / d F V t S паскаль– секунда Па·с Pa·s Вязкость кинематическая L2T–1 ν = η / квадратный метр на секунду м2/с m2/s Молярная масса MN–1 M = m /n килограмм на моль кг/моль kg/mol Коэффициент диффузии L2T–1 d / d m D x S t квадратный метр в секунду м2/с m2/s Молярный объем L3N–1 Vm = V / ν кубический метр на моль м3/моль m3/mol
Окончание табл. 1.3 Величина Размерность Определяющее уравнение Производная единица Наимено– вание Обозначение русское междуна– родное Молярная концентрация L–3N С = /V моль на кубический метр моль/м3 mol/m3 Энтропия системы L2MT–2–1 ∆S = ∆Q / T джоуль на кельвин Дж/К J/K Удельная теплоемкость L2T–2–1 c = Q / (m · ∆T) джоуль на килограммкельвин Дж/(кг·К) J/(kg·K) Молярная теплоемкость L2MT–2–1N–1 C = c · M джоуль на моль-кельвин Дж/(моль·К) J/(mol·K) Поверхностное натяжение MT–2 = ∆F / ∆l ньютон на метр н/м N/m В системе СИ существуют также производные единицы, которые имеют специальное название. Их перечень приведен в табл. 1.4. Таблица 1.4 Производные единицы СИ, имеющие специальные названия Величина Единица Наименование Размерность Наименование Обозначение Выражение через единицы СИ Плоский угол 1 Радиан рад м2·м–2=1 Телесный угол 1 Стерадиан ср м2·м–2=1 Частота T–1 Герц Гц с–1 Сила, вес LMT–2 Ньютон Н м·кг·с–2 Давление, механическое напряжение L–1MT–2 Паскаль Па м–1·кг·с–2 Энергия, работа, количество теплоты L2MT–2 Джоуль Дж м2·кг·с–2 Мощность L2MT–3 Ватт Вт м2·кг·с–3 Количество электричества TI Кулон Кл с·А Электрическое напряжение, потенциал, электродвижущая сила L2MT–3I–1 Вольт В м2·кг·с–3·А–1
Окончание табл. 1.4 Величина Единица Наименование Размерность Наименование Обозначение Выражение через единицы СИ Электрическая емкость L–2M–1T4I2 Фарад Ф м–2·кг–1·с4·А2 Электрическое сопротивление L2MT–3I–2 Ом Ом м2·кг·с–3·А–2 Электрическая проводимость L–2M–1T3I2 Сименс См М–2·кг–1·с3·А2 Поток магнитной индукции L2MT–2I–1 Вебер Вб м2·кг·с–2·А–1 Магнитная индукция MT–2I–1 Тесла Тл кг·с–2·А–1 Индуктивность L2MT–2I–2 Генри Гн м2·кг·с–2·А–2 Световой поток J Люмен лм кд·ср Освещенность L–2J Люкс лк м–2·кд·ср Активность радионуклида T–1 Беккерель Бк с–1 Поглощенная доза ионизирующего излучения L2T–2 Грей Гр м2·с–2 Эквивалентная доза излучения L2T–2 Зиверт Зв м2·с–2 Активность катализатора NT–1 Катал кат моль·с–1 Производной единицей давления в СИ является паскаль (Па). В литературе встречаются другие единицы измерения давления: атмосфера, миллиметр ртутного столба, миллиметр водяного столба, торр, миллибар и др. В термодинамических расчетах целесообразно использовать безразмерное (относительное) давление: 5 0 [Па] [атм] [ммрт.ст.] , 1[атм] 760[ммрт.ст.] 1,013 10 [Па] p p р р p p (1.1) где р – давление; р0 – давление при нормальных условиях. Это же следует из выражения дифференциала энергии Гиббса d d d , G V p S T (1.2) где G – энергия Гиббса, Дж/моль;
V – объем, м3; S – энтропия, Дж·моль–1·К–1; T – температура, К. Интегрирование в пределах G0, G и p0, p при T = const с учетом условия p · Vm = R · T приводит к уравнению 0 0 ln , p G G RT p (1.3) где G0 – стандартная энергия Гиббса, Дж/моль; R – универсальная газовая постоянная, Дж·моль–1·К–1. Это выражение в литературе обычно записывают в виде 0 ln G G RT p (1.4) или 0 ln , i i RT p (1.5) где µi – химический потенциал; 0 i – стандартный химический потенциал, не указывая, что под зна ком логарифма стоит не абсолютное, а относительное давление. Внесистемные единицы Некоторые единицы, не входящие в СИ, по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ. Примеры таких единиц приведены в табл. 1.5. Таблица 1.5 Внесистемные единицы, допускаемые к применению наравне с единицами СИ Величина Единица Наименование Обозначение Соотношение с единицей СИ Масса Тонна т 103 кг Атомная единица массы а.е.м. 1,66057·10–27 кг (приблизительно) Время Минута мин 60 с Час ч 3600 с Сутки сут 86400 с