Теоретическая физика. Том 3. Квантовая механика (нерелятивистская теория)
Покупка
Основная коллекция
Тематика:
Теоретическая физика
Издательство:
Физматлит
Под ред.:
Питаевский Лев Петрович
Год издания: 2016
Кол-во страниц: 800
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Бакалавриат
ISBN: 978-5-9221-0530-9
Артикул: 031778.06.99
Шестое издание третьего тома курса теоретической физики, заслужившего широкую известность в нашей стране и за рубежом. Книга содержит систематическое изложение основ нерелятивистской квантовой механики и наиболее существенные приложения теории к разнообразным физическим задачам.
Для студентов старших курсов физических специальностей вузов, а также аспирантов и научных работников, специализирующихся в области теоретической физики.
Тематика:
ББК:
УДК:
ОКСО:
- ВО - Бакалавриат
- 03.03.01: Прикладные математика и физика
- 04.03.02: Химия, физика и механика материалов
- 14.03.01: Ядерная энергетика и теплофизика
- 16.03.01: Техническая физика
- ВО - Магистратура
- 03.04.02: Физика
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
МОСКВА ФИЗМАТЛИТ 2016 Èçäàíèå øåñòîå, èñïðàâëåííîå
УДК 530.1(075.8) ББК 22.31 Л 22 Л а н д а у Л. Д., Л и ф ш и ц Е. М. Курс теоретической физики: Учеб. пособие для вузов. В 10 т. Т. III. Квантовая механика (нерелятивистская теория) / Под ред. Л.П. Питаевского. — 6-е изд., испр. — М.: ФИЗМАТЛИТ, 2016. — 800 с. — ISBN 978-5-9221-0530-9 (Т. III). Шестое издание третьего тома курса теоретической физики, заслужившего широкую известность в нашей стране и за рубежом. Книга содержит систематическое изложение основ нерелятивистской квантовой механики и наиболее существенные приложения теории к разнообразным физическим задачам. Для студентов старших курсов физических специальностей вузов, а также аспирантов и научных работников, специализирующихся в области теоретической физики. Учебное издание ЛАНДАУ Лев Давидович ЛИФШИЦ Евгений Михайлович КУРС ТЕОРЕТИЧЕСКОЙ ФИЗИКИ Том III КВАНТОВАЯ МЕХАНИКА (НЕРЕЛЯТИВИСТСКАЯ ТЕОРИЯ) Редактор Д.А. Миртова; корректор В.Р. Игнатова Оригинал-макет: А.С. Переверзева Подписано в печать 17.07.2008. Формат 60 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 50. Уч.-изд. л. 55. Тираж 500 экз. Заказ № Издательская фирма «Физико-математическая литература» МАИК «Наука/Интерпериодика» 117342, Москва, ул. Бутлерова, дом 17 Б E-mail: fizmat@maik.ru, fmlsale@maik.ru; http://www.fml.ru Отпечатано с электронных носителей издательства в OАO «Первая Образцовая типография» Филиал «Чеховский Печатный Двор» 142300, Московская обл., г. Чехов, ул. Полиграфистов, д. 1 Сайт: www.chpk.ru. E-mail: marketing@chpk.ru Факс: 8 (496) 726-54-10, тел.: 8 (495) 988-63-87 ISBN 978-5-9221-0530-9 ISBN 978-5-9221-0530-9 (Т. III) ISBN 978-5-9221-1508-7 c⃝ ФИЗМАТЛИТ, 2004, 2008, 2016
ОГЛАВЛЕНИЕ Предисловие редактора к четвертому изданию . . . . . . . . . . . . . 9 Предисловие к третьему изданию . . . . . . . . . . . . . . . . . . . . 9 Из предисловия к первому изданию . . . . . . . . . . . . . . . . . . . 10 Некоторые обозначения . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Г л а в а I. Основные понятия квантовой механики 1. Принцип неопределенности . . . . . . . . . . . . . . . . . . . . 13 2. Принцип суперпозиции . . . . . . . . . . . . . . . . . . . . . . . 19 3. Операторы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4. Сложение и умножение операторов . . . . . . . . . . . . . . . 28 5. Непрерывный спектр . . . . . . . . . . . . . . . . . . . . . . . . 32 6. Предельный переход . . . . . . . . . . . . . . . . . . . . . . . . 37 7. Волновая функция и измерения . . . . . . . . . . . . . . . . . 39 Г л а в а II. Энергия и импульс 8. Гамильтониан . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9. Дифференцирование операторов по времени . . . . . . . . . . 45 10. Стационарные состояния . . . . . . . . . . . . . . . . . . . . . 47 11. Матрицы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 12. Преобразование матриц . . . . . . . . . . . . . . . . . . . . . . 57 13. Гейзенберговское представление операторов . . . . . . . . . . 60 14. Матрица плотности . . . . . . . . . . . . . . . . . . . . . . . . . 61 15. Импульс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 16. Соотношения неопределенности . . . . . . . . . . . . . . . . . 70 Г л а в а III. Уравнение Шредингера 17. Уравнение Шредингера . . . . . . . . . . . . . . . . . . . . . . 74 18. Основные свойства уравнения Шредингера . . . . . . . . . . . 77 19. Плотность потока . . . . . . . . . . . . . . . . . . . . . . . . . . 81 20. Вариационный принцип . . . . . . . . . . . . . . . . . . . . . . 84 21. Общие свойства одномерного движения . . . . . . . . . . . . . 87 22. Потенциальная яма . . . . . . . . . . . . . . . . . . . . . . . . . 91 23. Линейный осциллятор . . . . . . . . . . . . . . . . . . . . . . . 95 24. Движение в однородном поле . . . . . . . . . . . . . . . . . . . 103 25. Коэффициент прохождения . . . . . . . . . . . . . . . . . . . . 105 Г л а в а IV. Момент импульса 26. Момент импульса . . . . . . . . . . . . . . . . . . . . . . . . . . 112 27. Собственные значения момента . . . . . . . . . . . . . . . . . . 116 28. Собственные функции момента . . . . . . . . . . . . . . . . . . 121 29. Матричные элементы векторов . . . . . . . . . . . . . . . . . . 124 30. Четность состояния . . . . . . . . . . . . . . . . . . . . . . . . . 129 31. Сложение моментов . . . . . . . . . . . . . . . . . . . . . . . . 132 Г л а в а V. Движение в центрально-симметричном поле 32. Движение в центрально-симметричном поле . . . . . . . . . . 136 33. Сферические волны . . . . . . . . . . . . . . . . . . . . . . . . 140 34. Разложение плоской волны . . . . . . . . . . . . . . . . . . . . 147
ОГЛАВЛЕНИЕ 35. Падение частицы на центр . . . . . . . . . . . . . . . . . . . . 150 36. Движение в кулоновом поле (сферические координаты) . . . 154 37. Движение в кулоновом поле (параболические координаты) . 166 Г л а в а VI. Теория возмущений 38. Возмущения, не зависящие от времени . . . . . . . . . . . . . 171 39. Секулярное уравнение . . . . . . . . . . . . . . . . . . . . . . . 177 40. Возмущения, зависящие от времени . . . . . . . . . . . . . . . 182 41. Переходы под влиянием возмущения, действующего в течение конечного времени . . . . . . . . . . . . . . . . . . . . . . . . . 186 42. Переходы под влиянием периодического возмущения . . . . . 193 43. Переходы в непрерывном спектре . . . . . . . . . . . . . . . . 196 44. Соотношение неопределенности для энергии . . . . . . . . . . 199 45. Потенциальная энергия как возмущение . . . . . . . . . . . . 203 Г л а в а VII. Квазиклассический случай 46. Волновая функция в квазиклассическом случае . . . . . . . . 208 47. Граничные условия в квазиклассическом случае . . . . . . . . 212 48. Правило квантования Бора–Зоммерфельда . . . . . . . . . . . 215 49. Квазиклассическое движение в центрально-симметричном поле . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 50. Прохождение через потенциальный барьер . . . . . . . . . . . 226 51. Вычисление квазиклассических матричных элементов . . . . 232 52. Вероятность перехода в квазиклассическом случае . . . . . . 239 53. Переходы под влиянием адиабатических возмущений . . . . . 244 Г л а в а VIII. Спин 54. Спин . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 55. Оператор спина . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 56. Спиноры . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 57. Волновые функции частиц с произвольным спином . . . . . . 262 58. Оператор конечных вращений . . . . . . . . . . . . . . . . . . 269 59. Частичная поляризация частиц . . . . . . . . . . . . . . . . . . 275 60. Обращение времени и теорема Крамерса . . . . . . . . . . . . 277 Г л а в а IX. Тождественность частиц 61. Принцип неразличимости одинаковых частиц . . . . . . . . . 281 62. Обменное взаимодействие . . . . . . . . . . . . . . . . . . . . . 285 63. Симметрия по отношению к перестановкам . . . . . . . . . . . 290 64. Вторичное квантование. Случай статистики Бозе . . . . . . . 298 65. Вторичное квантование. Случай статистики Ферми . . . . . . 305 Г л а в а X. Атом 66. Атомные уровни энергий . . . . . . . . . . . . . . . . . . . . . 309 67. Состояния электронов в атоме . . . . . . . . . . . . . . . . . . 311 68. Водородоподобные уровни энергии . . . . . . . . . . . . . . . . 315 69. Самосогласованное поле . . . . . . . . . . . . . . . . . . . . . . 317 70. Уравнение Томаса–Ферми . . . . . . . . . . . . . . . . . . . . . 321 71. Волновые функции внешних электронов вблизи ядра . . . . . 328 72. Тонкая структура атомных уровней . . . . . . . . . . . . . . . 329 73. Периодическая система элементов Менделеева . . . . . . . . . 334 74. Рентгеновские термы . . . . . . . . . . . . . . . . . . . . . . . . 343 75. Мультипольные моменты . . . . . . . . . . . . . . . . . . . . . 345 76. Атом в электрическом поле . . . . . . . . . . . . . . . . . . . . 350 77. Атом водорода в электрическом поле . . . . . . . . . . . . . . 355
ОГЛАВЛЕНИЕ 7 Г л а в а XI. Двухатомная молекула 78. Электронные термы двухатомной молекулы . . . . . . . . . . 367 79. Пересечение электронных термов . . . . . . . . . . . . . . . . 370 80. Связь молекулярных термов с атомными . . . . . . . . . . . . 374 81. Валентность . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 82. Колебательная и вращательная структуры синглетных термов двухатомной молекулы . . . . . . . . . . . . . . . . . . . . . . . 386 83. Мультиплетные термы. Случай a . . . . . . . . . . . . . . . . 392 84. Мультиплетные термы. Случай b . . . . . . . . . . . . . . . . . 397 85. Мультиплетные термы. Случаи с и d . . . . . . . . . . . . . . 401 86. Симметрия молекулярных термов . . . . . . . . . . . . . . . . 404 87. Матричные элементы для двухатомной молекулы . . . . . . . 408 88. Λ-удвоение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 89. Взаимодействие атомов на далеких расстояниях . . . . . . . . 416 90. Предиссоциация . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 Г л а в а XII. Теория симметрии 91. Преобразования симметрии . . . . . . . . . . . . . . . . . . . . 433 92. Группы преобразований . . . . . . . . . . . . . . . . . . . . . . 436 93. Точечные группы . . . . . . . . . . . . . . . . . . . . . . . . . . 441 94. Представления групп . . . . . . . . . . . . . . . . . . . . . . . . 449 95. Неприводимые представления точечных групп . . . . . . . . . 459 96. Неприводимые представления и классификация термов . . . 463 97. Правила отбора для матричных элементов . . . . . . . . . . . 466 98. Непрерывные группы . . . . . . . . . . . . . . . . . . . . . . . 471 99. Двузначные представления конечных точечных групп . . . . 476 Г л а в а XIII. Многоатомные молекулы 100. Классификация молекулярных колебаний . . . . . . . . . . . 481 101. Колебательные уровни энергии . . . . . . . . . . . . . . . . . . 488 102. Устойчивость симметричных конфигураций молекулы . . . . 491 103. Квантование вращения волчка . . . . . . . . . . . . . . . . . . 498 104. Взаимодействие колебаний и вращения молекулы . . . . . . . 508 105. Классификация молекулярных термов . . . . . . . . . . . . . 514 Г л а в а XIV. Сложение моментов 106. 3j-символы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 107. Матричные элементы тензоров . . . . . . . . . . . . . . . . . . 532 108. 6j-символы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 109. Матричные элементы при сложении моментов . . . . . . . . . 543 110. Матричные элементы для аксиально-симметричных систем . 546 Г л а в а XV. Движение в магнитном поле 111. Уравнение Шредингера в магнитном поле . . . . . . . . . . . 550 112. Движение в однородном магнитном поле . . . . . . . . . . . . 554 113. Атом в магнитном поле . . . . . . . . . . . . . . . . . . . . . . 559 114. Спин в переменном магнитном поле . . . . . . . . . . . . . . . 568 115. Плотность тока в магнитном поле . . . . . . . . . . . . . . . . 570 Г л а в а XVI. Структура атомного ядра 116. Изотопическая инвариантность . . . . . . . . . . . . . . . . . . 572 117. Ядерные силы . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 118. Модель оболочек . . . . . . . . . . . . . . . . . . . . . . . . . . 583 119. Несферические ядра . . . . . . . . . . . . . . . . . . . . . . . . 593 120. Изотопическое смещение . . . . . . . . . . . . . . . . . . . . . . 600
ОГЛАВЛЕНИЕ 121. Сверхтонкая структура атомных уровней . . . . . . . . . . . . 602 122. Сверхтонкая структура молекулярных уровней . . . . . . . . 606 Г л а в а XVII. Упругие столкновения 123. Общая теория рассеяния . . . . . . . . . . . . . . . . . . . . . . 609 124. Исследование общей формулы . . . . . . . . . . . . . . . . . . 614 125. Условие унитарности для рассеяния . . . . . . . . . . . . . . . 617 126. Формула Борна . . . . . . . . . . . . . . . . . . . . . . . . . . . 622 127. Квазиклассический случай . . . . . . . . . . . . . . . . . . . . 630 128. Аналитические свойства амплитуды рассеяния . . . . . . . . . 635 129. Дисперсионное соотношение . . . . . . . . . . . . . . . . . . . . 642 130. Амплитуда рассеяния в импульсном представлении . . . . . . 645 131. Рассеяние при больших энергиях . . . . . . . . . . . . . . . . . 649 132. Рассеяние медленных частиц . . . . . . . . . . . . . . . . . . . 657 133. Резонансное рассеяние при малых энергиях . . . . . . . . . . 666 134. Резонанс на квазидискретном уровне . . . . . . . . . . . . . . 674 135. Формула Резерфорда . . . . . . . . . . . . . . . . . . . . . . . . 680 136. Система волновых функций непрерывного спектра . . . . . . 684 137. Столкновения одинаковых частиц . . . . . . . . . . . . . . . . 689 138. Резонансное рассеяние заряженных частиц . . . . . . . . . . . 692 139. Упругие столкновения быстрых электронов с атомами . . . . 697 140. Рассеяние при спин-орбитальном взаимодействии . . . . . . . 702 141. Полюсы Редже . . . . . . . . . . . . . . . . . . . . . . . . . . . 708 Г л а в а XVIII. Неупругие столкновения 142. Упругое рассеяние при наличии неупругих процессов . . . . . 716 143. Неупругое рассеяние медленных частиц . . . . . . . . . . . . . 723 144. Матрица рассеяния при наличии реакций . . . . . . . . . . . . 726 145. Формулы Брейта и Вигнера . . . . . . . . . . . . . . . . . . . . 730 146. Взаимодействие в конечном состоянии при реакциях . . . . . 739 147. Поведение сечений вблизи порога реакции . . . . . . . . . . . 742 148. Неупругие столкновения быстрых электронов с атомами . . . 749 149. Эффективное торможение . . . . . . . . . . . . . . . . . . . . . 759 150. Неупругие столкновения тяжелых частиц с атомами . . . . . 764 151. Рассеяние нейтронов . . . . . . . . . . . . . . . . . . . . . . . . 767 152. Неупругое рассеяние при больших энергиях . . . . . . . . . . 772 Математические дополнения a. Полиномы Эрмита . . . . . . . . . . . . . . . . . . . . . . . . . 779 b. Функция Эйри . . . . . . . . . . . . . . . . . . . . . . . . . . . 781 c. Полиномы Лежандра . . . . . . . . . . . . . . . . . . . . . . . . 784 d. Вырожденная гипергеометрическая функция . . . . . . . . . 787 e. Гипергеометрическая функция . . . . . . . . . . . . . . . . . . 792 f. Вычисление интегралов с вырожденными гипергеометрическими функциями . . . . . . . . . . . . . . . . . . . . . . . . . 794 Предметный указатель . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
ПРЕДИСЛОВИЕ РЕДАКТОРА К ЧЕТВЕРТОМУ ИЗДАНИЮ В настоящем издании «Квантовой механики» исправлены опечатки и неточности, замеченные с момента выхода третьего издания. Внесены также небольшие уточнения и добавлено несколько задач. Я благодарен всем читателям книги, сообщившим мне свои замечания. Май 1988 г. Л. Л. Питаевский ПРЕДИСЛОВИЕ К ТРЕТЬЕМУ ИЗДАНИЮ Предыдущее издание этого тома было последней книгой, над которой мне довелось работать совместно с моим учителем Л. Д. Ландау. Произведенная в то время переработка и дополнение книги были весьма значительными и коснулись всех ее глав. Естественно, что для этого нового издания потребовалась существенно меньшая переработка. Тем не менее добавлено (в том числе в виде задач) заметное количество нового материала: он относится как к результатам последних лет, так и к тем из более старых результатов, которые в последнее время привлекли к себе повышенное внимание. Феноменальное владение Львом Давидовичем аппаратом теоретической физики позволяло ему сплошь и рядом обходиться без обращения к оригинальным работам для воспроизведения тех или иных результатов своим путем. Это могло стать причиной отсутствия в книге некоторых необходимых ссылок; я постарался в этом издании по возможности добавить их. В то же время я добавил ссылки на самого Льва Давидовича в тех местах, где излагаются результаты или методы, принадлежащие ему лично и не публиковавшиеся в самостоятельном виде. Как и в работе над переизданием других томов этого Курса, я имел помощь со стороны своих многочисленных товарищей,
ИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮ указывавших мне как на допущенные ранее дефекты изложения, так и на желательность тех или иных добавлений. Ряд полезных указаний, учтенных в этой книге, я получил от А. М. Бродского, Г. Ф. Друкарева, И. Г. Каплана, В. П. Крайнова, И. Б. Левинсона, П. Э. Немировского, В. Л. Покровского, И. И. Собельмана, И. С. Шапиро; всем им я хотел бы выразить свою искреннюю благодарность. Вся работа над новым изданием этого тома произведена мной при близком участии Л. П. Питаевского. В его лице мне посчастливилось найти товарища по работе, прошедшего ту же школу Ландау и воодушевленного теми же научными идеалами. Институт физических проблем АН СССР Москва, ноябрь 1973 г. Е. М. Лифшиц ИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮ Предлагаемый том Курса теоретической физики посвящен изложению квантовой механики. Ввиду очень большого объема относящегося сюда материала представилось целесообразным разделить его на две части. Публикуемая первая часть содержит нерелятивистскую теорию, а релятивистская теория составит содержание второй части. Под релятивистской теорией мы подразумеваем, в самом широком смысле, теорию всех квантовых явлений, существенно зависящих от скорости света. Соответственно этому в нее будет включена не только релятивистская теория Дирака и связанные с нею вопросы, но и вся квантовая теория излучения. Наряду с основами квантовой механики в книге изложены также и многочисленные ее применения — в значительно большей степени, чем это обычно делается в общих курсах квантовой механики. Мы исключали из рассмотрения, только такие вопросы, исследование которых требовало бы существенным образом одновременного подробного анализа экспериментальных данных, что неизбежно вышло бы за рамки книги. Изложение конкретных вопросов мы стремились вести с наибольшей полнотой. В связи с этим мы считали излишними ссылки на оригинальные работы, ограничиваясь указанием их авторов. Как и в предыдущих томах, изложение общих вопросов мы старались вести таким образом, чтобы по возможности ясно выявить физическую сущность теории и на ее основе строить математический аппарат. Это в особенности сказалось на первых параграфах книги, посвященных выяснению общих свойств
ИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮ 11 квантовомеханическмх операторов. В противоположность обычно принятой схеме изложения, исходящей из математических теорем о линейных операторах, мы, наоборот, выводим математические требования, предъявляемые к операторам и собственным функциям, исходя из физической постановки вопроса. Нельзя не отметить, что во многих курсах квантовой механики изложение существенно усложнилось по сравнению с оригинальными работами. Хотя такое изложение обычно аргументируется общностью и строгостью, но при внимательном рассмотрении легко заметить, что и та и другая в действительности часто иллюзорны до такой степени, что заметная часть «строгих» теорем является ошибочной. Поскольку такое усложнение изложения представляется нам совершенно неоправданным, мы, наоборот, стремились к возможной простоте и во многом вернулись к оригинальным работам. Некоторые чисто математические сведения вынесены нами в конец книги в виде «Математических дополнений», чтобы, по возможности, не прерывать изложения в тексте отвлечением в вычислительную сторону. Эти дополнения преследуют также и справочные цели. Москва, май 1947 г. Л. Д. Ландау, Е. М. Лифшиц
НЕКОТОРЫЕ ОБОЗНАЧЕНИЯ Операторы обозначаются буквами со шляпкой: f Элемент объема: пространства — dV , конфигурационного пространства — dq, импульсного пространства — d3p Матричные элементы величины f (см. определение на с. 51) — fnm или ⟨n|f|m⟩ Частота переходов ωnm = (En − Em)/ℏ Коммутатор двух операторов { f, g} = fg − g f Гамильтониан — H Фазовые сдвиги волновых функций — δl Атомные и кулоновы единицы —см. определение на с. 154, 155 Векторные и тензорные индексы обозначаются латинскими буквами i, k, l Антисимметричный единичный тензор — eikl (см. определение на с. 114) Ссылки на номера параграфов и формул в других томах этого Курса снабжены римскими цифрами: I — том I, «Механика», 1988; II — том II, «Теория поля», 1989; IV — том IV, «Квантовая электродинамика», 1989.