Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Математика. Практикум

Покупка
Артикул: 736694.01.99
Доступ онлайн
794 ₽
В корзину
Учебное пособие разработано в соответствии с типовой учебной программой по учебной дисциплине «Математика». Включает материалы для практических занятий по 14 темам. Содержит атгоритмы решений, порядок действий для выполнения учащимися индивидуальных заданий, решения типовых примеров и задач, которые достаточно полно отображают суть основных математических понятий. Приведены ответы к заданиям. Предназначено для учащихся учреждений среднего специального образования по специальностям «Программное обеспечение информационных технологий», «Программируемые мобильные системы», также будет полезно для студентов и преподавателей вузов.
Фоминых, Е. И. Математика. Практикум : учебное пособие / Е. И. Фоминых. - 2-е изд., испр. - Минск : РИПО, 2019. - 440 с. - ISBN 978-985-503-936-6. - Текст : электронный. - URL: https://znanium.ru/catalog/product/1088275 (дата обращения: 21.11.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов
Е. И. Фоминых

МАТЕМАТИКА

ПРАКТИКУМ

До пущено  М инист ер ст во м об р а зо в а ния Р еспубл ики Б ел а р усь 

в  кач ест в е уч еб но го  по со б ия дл я уч а щихся уч р еж д ений 
об р а зо в а ния,  р еа л изую щих о б р а зо в ат ель ны е пр о гр а ммы  
ср ед него  специа ль но го  о бр а зо в а ния по  специа ль но ст ям

«Пр огр а ммно е о беспеч ение инф ор ма цио нны х т ехно л огий»,

«Пр огр а мм ир уемы е мо б иль ны е сист емы »

2- е изд а ние,  испр а в л енно е

Минск
РИПО
2019

УДК 51(076.5)
ББК 22.1я723

Ф76

А в т о р:

преподаватель УО «Гомельский торгово-экономический колледж» Белкоопсоюза Е. И. Фоминых.

Р е ц е н з е н т ы:

цикловая комиссия общеобразовательных и технических дисциплин УО «Полоцкий торгово
технологический колледж» Белкоопсоюза (Е. Т. Тюстина);

доцент кафедры «Высшая математика» УО «Белорусский государственный аграрный технический

университет», кандидат физико-математических наук, доцент Л. А. Хвощинская.

Все права на данное издание защищены. Воспроизведение всей книги или любой ее части не может 

быть осуществлено без разрешения издательства.

Выпуск издания осуществлен при финансовой поддержке Министерства образования Республики 

Беларусь.

Фоминых, Е. И.

Ф76
Математика. Практикум : учеб. пособие / Е. И. Фоминых. – 2-е изд., испр. – Минск :

РИПО, 2019. – 440 с. : ил.

ISBN 978-985-503-936-6.

Учебное пособие разработано в соответствии с типовой учебной программой по учебной дис
циплине «Математика». Включает материалы для практических занятий по 14 темам. Содержит 
алгоритмы решений, порядок действий для выполнения учащимися индивидуальных заданий, решения типовых примеров и задач, которые достаточно полно отображают суть основных математических понятий. Приведены ответы к заданиям.

Предназначено для учащихся учреждений среднего специального образования по специаль
ностям «Программное обеспечение информационных технологий», «Программируемые мобильные системы», также будет полезно для студентов и преподавателей вузов.

УДК 51(076.5)
ББК  22.1я723

Учебное издание

Редактор, компьютерная верстка Е.В. Потапейко

Корректор И.В. Счеснюк

Дизайн обложки И.В. Дворниковой

Подписано в печать 07.06.19. Формат 6084/16. Гарнитура «Таймс». Бумага офсетная. Ризография.

Усл. печ. л. 25,65. Уч.-изд. л. 16,0. Тираж 600 экз. Заказ 118. 

Издатель и полиграфическое исполнение: 

Республиканский институт профессионального образования. Свидетельство о государственной
регистрации издателя, изготовителя, распространителя печатных изданий № 1/245 от 27.03.2014.

Ул. К. Либкнехта, 32, 220004, Минск. Тел.: 226 41 00, 200 43 88.

Отпечатано в Республиканском институте профессионального образования. Тел. 200 69 45.

ISBN 978-985-503-936-6
© Фоминых Е. И., 2017
© Оформление. Республиканский институт
  профессионального образования, 2017

1. ВВЕДЕНИЕ В КУРС МАТЕМАТИКИ

1.1. Операции над множествами. Факториал. 

Метод математической индукции

Умение
Алгоритм

Доказательство 
утверждений, содержащих в своей 
формулировке натуральное число n , 
методом математической индукции

1. Проверить, выполняется ли утверждение при 
1
n 
, подставив в данную фор
мулу 
1
n 
.

2. Подставить в данную формулу k  вместо n  и предположить, что полученный 
результат верен. 
3. Доказать, что утверждение верно при 

1
n
k


.

4. Сделать вывод, что утверждение верно 
при любом n

Проведение операций над множествами

1. Определить, какие элементы принадлежат множеству, а какие нет.
2. Найти объединение множеств.
3. Найти пересечение множеств

Вычисление факториала

Факториал числа n (обозначается
!
n ) —

произведение всех натуральных чисел от 
1 до n включительно, т. е.



!
1 2 3...
1
.
n
n
n




Условно считают, 

что 0!
1


Математика. Практикум

4

Пример 1. Доказать методом математической индукции, что 

для любого натурального n  справедливо равенство 




1
1
1
...
1 2
2 3
1
1

n

n n
n








.

Решение:

Алгоритм
Действие

1. Проверить,
выполняется 
ли утверждение 
при 
1
n 
, под
ставив в данную формулу 

1
n 

При 
1
n 
 имеем в левой части равенства 

1
1

1 2
2


, в правой то же самое:

1
1

1
1
1
2

n

n




. Таким образом, при 
1
n 

утверждение верно

2. Подставить в 
данную формулу k  вместо 
n  и предположить, что полученный результат верен

При n
k

 утверждение имеет вид




1
1
1
...
1 2
2 3
1
1

k

k k
k








.

Считаем это равенство верным

3. Доказать, 
что утверждение верно при 

1
n
k



При
1
n
k


 утверждение принимает вид





1
1
1
1
...
1 2
2 3
1
1
1
1
1

k

k
k
k














или 




1
1
1
1
...
1 2
2 3
1
2
2

k

k
k
k











.

Докажем последнее равенство. Для этого преобразуем левую часть, вписав предпоследнее 
слагаемое в сумму дробей в левой части равен
ства




1
1
1
...
1 2
2 3
1
2
k
k















1
1
1
1
...
.
1 2
2 3
1
1
2
k k
k
k











При сделанном предположении сумма первых 

1. Введение в курс математики

5

Алгоритм
Действие

k  дробей равна 
1

k

k 
. В результате в левой 

части имеем 




1

1
1
2

k

k
k
k




. Складывая 

дроби с разными знаменателями, получим 












2
1
1

1
1
2
1
2

k k
k

k
k
k
k
k























2
2
1
2
1

1
2
1
2

k
k
k

k
k
k
k


















1
1

2
2

k
k

k
k







, что и требовалось доказать

4. Сделать вывод, что утверждение верно 
при любом n

Утверждение доказано для любых значений 
n
N


Пример 2. Доказать, что при любом натуральном n  число 

3
2
3
5
n
n
n


 делится на 3.

Решение:

Алгоритм
Действие

1. Проверить, выполняется ли утверждение, что 
число 

3
2
3
5
n
n
n



делится на 3 при 

1
n 
, подставив в 

данное число 
1
n 

Обозначим 

3
2
3
5
na
n
n
n



.

При 
1
n 
 имеем: 

3
2

1
1
3 1
5 1
9,
a 





 по
этому 
1a  делится на 3. Таким образом, при 

1
n 
 утверждение верно

2. Подставить в данное число k  вместо 
n  и предположить, 
что полученный результат верен

При n
k

 число имеет вид 

3
2
3
5
ka
k
k
k



.

Считаем, что число 
ka делится на 3

Математика. Практикум

6

Алгоритм
Действие

3. Доказать, что
утверждение, что 
число 

3
2
3
5
n
n
n



делится на 3, верно 
при 
1
n
k



Установим, что при 
1
n
k


 число








3
2

1
1
3
1
5
1
ka
k
k
k
 





 делится 

на 3. 
















3
2

1

3
2
2

3
2
2

2

1
3
1
5
1

3
3
1
3
6
3
5
5

3
5
3
3
3

3
3
3 .

k

k

a
k
k
k

k
k
k
k
k
k

k
k
k
k
k

a
k
k

 































Так как каждое слагаемое делится на 3, то 
их сумма также делится на 3, что и требовалось доказать

4. Сделать вывод, 
что данное утверждение верно при 
любом n

Утверждение, что число 

3
2
3
5
n
n
n


 делит
ся на 3, доказано для любых значений 
n
N


Пример 3. Даны два множества: 



2
:
5
6
0
A
x
x
x




 и 




2
:
13
36
0 .
B
x
x
x




 Найти A
B

, A
B

.

Решение:

Алгоритм
Действие

1. Решить неравенство 

2
5
6
0
x
x




методом интервалов

Решая квадратное уравнение 

2
5
6
0,
x
x



 находим корни 

1
2

5
25
4 6
5
1
,
2
2
x x






, 
1

5
1
2
2
x



, 

2

5
1
3
2
x



.

Методом интервалов решаем неравенство



2
3
0
x
x




2 
3 

Множеству A  принадлежат все действительные числа из отрезка 

2; 3

1. Введение в курс математики

7

Алгоритм
Действие

2. Решить неравенство 

2
13
36
0
x
x




методом интервалов

Решая квадратное уравнение

2
13
36
0
x
x



, находим корни 

1
2

13
169
4 36
13
5
,
2
2
x x






, 

1

13
5
4
2
x



, 
2

13
5
9
2
x



.

Методом интервалов решаем неравенство



4
9
0
x
x




4 
9

Множеству B  принадлежат все действительные числа из отрезка 

4; 9

3. Найти объединение множеств

Находим объединение множеств: 





2; 3
4; 9
A
B




4. Найти пересечение множеств

Находим пересечение множеств: 
A
B

 

Пример 4. Найти 3! 5!
0!
2! 4!




.

Решение:

Алгоритм
Действие

Применить формулу 
факториала 



!
1 2 3...
1
n
n
n
















3! 5!
1 2 3
1 2 3 4 5
0!
1
4! 5!
1 2 3 4
1 2 3 4 5

1 2 3
1
4 5
6
1
20
1
1
1 2 3 4
1
5
24
1
5

21
7
7
7
8
15
1
1
1
4 6
4 2
8
8
8























































Математика. Практикум

8

Индивидуальные задания

1. Найти.

1
2
3
4
5
6

2!
3!

4!

2!
0!

1!

3!
4!

2!

1!
3!

4!

2!
0!

2!

3!
0!

2!


7
8
9
10
11
12

3!
4!

6!

3! 4!
4!
2!




3

4!
2!


2!
3!

4!

3! 4!
4!
2!




2!
3!

4!


13
14
15
16
17
18

5!
4!

3!

2!
6!

5! 2!




3!
4!

0!

3!
4!

5!

3!
4!

2!

2!
0!

1!


19
20
21
22
23
24

3!
4!

4!
2!




1!
2!

4

5!
4!

3!

5!
3!

4!

3!
8!

4!
2!




5!
4!

3!


25
26
27
28
29
30

2!
3!

3!

0!
4!

5!
2!




3!
4!

4!
0!




6!
4!

3!

3!
7!

5!

3!
4!

4!
2!




2. Найти U
A

, A
B

, B
C

, C
D

, U
A

, U
B

, 

B
C

и A
D

.

1
















15,
14,
13,
12,
11

15,
13,
9

18,
12,
11

15,
16

12

U

A

B

C

D

 





 



 



 


 

2













 

10,
5, 5, 10, 15

10, 10

6, 5, 16

5, 10, 18

9

U

A

B

C

D

 


 

 





3
















9,
4, 5, 10, 15

8, 6

5, 6, 12

5, 9, 13

5, 10

U

A

B

C

D

 


 

 





4













 

10, 11, 12, 13, 14

10, 11, 12

12, 13, 14

10, 14

12

U =

A =

B =

C =

D =

1. Введение в курс математики

9

5
















, , ,
, ,
,

, , ,

,
, ,
,

, ,

,

U
a b c d e f
g

A
a b c d

B
c d e f
g

C
d e f

D
f
g











6
















1, 2, 3, 4, 5, 6, 7

1, 2, 3, 4

4, 5, 6, 7

2, 4, 6

2, 4

U

A

B

C

D











7













 

А, В, С, Д, Å

А, В, Û

В, С, Р

А, Ë

Д

U

A

B

C

D











8













 

1, 3, 4, 5, 7, 9

1, 3, 9

5, 7, 9

4, 5

9

U

A

B

C

D











9
















16,
14,
13,
12,
11

16,
13,
12

14,
12,
11

15,
11

12

U

A

B

C

D

 





 



 



 


 

10
















1, 2, 3, 4, 5

1, 2, 3, 4

4, 5

2, 4

2, 3

U

A

B

C

D











11
















, , ,

,

,
, ,
,

,

,

U
a b c d

A
a b

B
c d e
f
g

C
a b

D
b g











12
















1, 2, 3, 4, 5

1, 2, 3, 4

4, 5

2, 4

2, 3

U

A

B

C

D











13













 

1, 2, 3, 4, 5

1, 3, 6

2, 8

2, 4, 7

5

U

A

B

C

D











14













 

1, 2, 3, 4, 5

1, 3, 5

2, 4

2, 3, 4

5

U

A

B

C

D











Математика. Практикум

10

15













 

10, 11, 12, 13, 14

10, 11, 12

12, 13, 14

10, 14

12

U

A

B

C

D











16
















1, 2, 3, 4, 5, 6, 7

1, 2, 3, 5

3, 5, 6, 7

1, 4, 6

3, 4

U

A

B

C

D











17













 

10,
5, 5, 10, 15

10, 10

5, 5, 15

5, 10, 15

5

U

A

B

C

D

 


 

 





18




 










,
, , ,

,

,
,

, ,

U
x y z t u

A
t

B
x u

C
x y z

D
y z t











19













 

2, 4, 6, 8, 10

2, 7

4, 6, 7

2, 6, 9

3

U

A

B

C

D











20













 

, , ,
, ,
,

, , ,

,
, ,

,

U
a b c d e f
g

A
a b c d

B
c d e f

C
e f

D
g











21













 

1, 2, 3, 4, 6

1, 2, 6

3, 4

1, 3, 4

3

U

A

B

C

D











22













 

1, 2, 3, 4, 5

1, 3, 5

2, 4

2, 3, 4

5

U

A

B

C

D











23













 

1, 3, 5, 7, 9

1,3, 9

5, 7, 9

4, 5

9

U

A

B

C

D











24
















10,
5, 5, 15, 18

10,
18

5, 5, 15

5, 15, 18

5

U

A

B

C

D

 


 


 



 

Доступ онлайн
794 ₽
В корзину