Supplementary Reading in Aircraft Engineering
Покупка
Основная коллекция
Тематика:
Английский язык
Издательство:
Южный федеральный университет
Год издания: 2018
Кол-во страниц: 84
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Бакалавриат
ISBN: 978-5-927-52756-4
Артикул: 717696.01.99
Данное пособие содержит необходимый лексический и грамматический материал, предназначенный для овладения и совершенствования навыков перевода англоязычных статей в области авиастроения. Пособие снабжено большим количеством примеров и упражнений для самостоятельной работы. Предназначено для студентов дневной формы обучения специальностей 24.05.07 «Самолето- и вертолетостроение», 25.03.01 «Техническая эксплуатация летательных аппаратов и двигателей», а также для широкого круга лиц. интересующихся данной тематикой.
Тематика:
ББК:
УДК:
- 6297: Авиация и космонавтика. Летательные аппараты. Ракетная техника. Космическая техника
- 811111: Английский язык
ОКСО:
- ВО - Бакалавриат
- 25.03.01: Техническая эксплуатация летательных апаратов и двигателей
- ВО - Специалитет
- 24.05.07: Самолето- и вертолетостроение
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования “ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ” Инженерно-технологическая академия И. И. ДАНИЛОВА, О. Г. МЕЛЬНИК, А. А. ЯКОВЛЕВ SUPPLEMENTARY READING IN AIRCRAFT ENGINEERING Учебноепособие Ростов-на-Дону – Таганрог Издательство Южного федерального университета 2018
УДК 811.111(075.В) ББК 81.2Англ-92 Д183 Печатается по решению кафедры лингвистического образования Института управления в экономических, экологических и социальных системах Южного федерального университета (протокол № 6 от 30 января 2017 г.) Рецензенты: кандидат филологических наук, доцент Южного федерального университета Л. В. Буренко кандидат филологических наук, доцент Таганрогского института им. А. П. Чехова РГЭУ (РИНХ) М. Г. Аханова Данилова, И. И. Д183 Supplementary Reading in Aircraft Engineering : учебное пособие / И. И. Данилова, О. Г. Мельник, А. А. Яковлев ; Южный федеральный университет. – Ростов-на-Дону ; Таганрог : Издательство Южного федерального университета, 2018. – 84 с. ISBN 978-5-9275-2756-4 Данное пособие содержит необходимый лексический и грамматический материал, предназначенный для овладения и совершенствования навыков перевода англоязычных статей в области авиастроения. Пособие снабжено большим количеством примеров и упражнений для самостоятельной работы. Предназначено для студентов дневной формы обучения специальностей 24.05.07 «Самолето- и вертолетостроение», 25.03.01 «Техническая эксплуатация летательных аппаратов и двигателей», а также для широкого круга лиц, интересующихся данной тематикой. УДК 811.111(075.В) ББК 81.2Англ-92 ISBN 978-5-9275-2756-4 © Южный федеральный университет, 2018 © Данилова И. И., Мельник О. Г., Яковлев А. А., 2018 © Оформление. Макет. Издательство Южного федерального университета, 2018
СОДЕРЖАНИЕ Предисловие ....................................................................................................4 A318/319/320/321 General Description ...........................................................5 MODULE 1 .....................................................................................................12 Structure...........................................................................................................12 Doors................................................................................................................14 MODULE 2 .....................................................................................................19 Flight Control System......................................................................................19 Navigation........................................................................................................23 MODULE 3......................................................................................................29 Autoflight.........................................................................................................29 Communication................................................................................................32 MODULE 4......................................................................................................36 Landing Gear....................................................................................................36 Lights................................................................................................................40 MODULE 5......................................................................................................43 Hydraulic Power...............................................................................................43 Pneumatic system.............................................................................................45 MODULE 6......................................................................................................48 Airborne Auxiliary Power................................................................................48 Power Plant ......................................................................................................50 MODULE 7......................................................................................................55 Air Conditioning ..............................................................................................55 Oxygen.............................................................................................................60 MODULE 8......................................................................................................63 Fuel System......................................................................................................63 Water and Waste..............................................................................................67 MODULE 9 .....................................................................................................70 Fire Protection..................................................................................................70 Ice and Rain Protection....................................................................................74 MODULE 10 ...................................................................................................78 Air Traffic Info Management...........................................................................78 Electrical Power...............................................................................................80
ПРЕДИСЛОВИЕ Современному авиаинженеру владение современным профессионально-ориентированным английским жизненно необходимо для успеха всех деловых инициатив и научных исследований. С каждым годом возрастает поток научно-технической информации, поступающий в Россию, и, к сожалению, значительная часть этой информации часто остается не прочитанной. В результате будущие специалисты зачастую понятия не имеют об актуальных технических и технологических инновациях, являющихся общеизвестными для мирового самолето- и вертолетостроения. Очевидно, что организация учебного процесса для студентов авиационного профиля в рамках изучения дисциплины «Иностранный язык для профессиональных (специальных) целей» должна быть направлена на формирование иноязычной профессиональной компетенции, которая позволит будущим специалистам участвовать в процессе создания и обслуживания современной мировой авиации. Авторы пособия выражают благодарность кандидату технических наук, доценту кафедры «Летательные аппараты» Института радиотехнических систем и управления ЮФУ И. В. Борисову за помощь при подготовке учебного пособия. Авторы с благодарностью примут все замечания, предложения и пожелания и учтут их в дальнейшей работе. Официальный сайт кафедры лингвистического образования ЮФУ: lo@tgn.sfedu.ru.
THE A318/319/320/321 FAMILY. A GENERAL DESCRIPTION Before we design an aircraft, there are a lot of people we listen to: - the businessman is interested in saving time, - the cabin crew want the aircraft to be user friendly, - the ground crew want easy maintenance, - the pilot wants the aircraft to be dependable and easy to handle, - management are interested in the bottom line and our sales team want an aircraft that can go out and beat the competition with. So when we have done the listening, we started to design a new generation 150 seat. And what we design has been a great success on original lines all over the world. With the latest electronics Flight By Wire control and a new approach to the man machine interface, the A320 really is the state of the art in commercial aviation. But to the Airbus Industry approach to the success is to go further. By getting our ideas clear at the design stage we have made the A320 the start of a real family. For example, to stretch the 150 seat A320 into a 190 seat A321 we have simply to make local re-enforcements to the wing and center section and some minor changes to the flight control software. The rest could stay virtually the same. The A321 is an A320 with two extra fuselage sections and room for 36 more paying customers. In the same way we have been able to shorten the A320 to create the A319, the most economic member of the family. These three aircrafts between them cover the needs of the airlines from 124 to 185 seats. This family design makes it easier for an airline to cope with daily or seasonal variations in traffic and keep maintenance costs down because of the fleet effect. COMFORT The family effect is all the greater because the initial design was right. For passengers, this means an aircraft that is comfortable and convenient in every class. The versatility of the single aisle cabin lets operate as to match the market. First, business or economy class layouts as passenger demand requires. On regional flights, this means an equal comfort and useful flexibility for the airline. FLEXIBILITY The cabin intercommunication system makes it easy to vary cabin configuration. With the wide aisle, cabin crew and passengers can move more easily. A
SUPPLEMENTARY READING IN AIRCRAFT ENGINEERING 6 standard A321 with 196 passengers has a turn round time of only 34 minutes and this reduces to 29 minutes with the wide aisle option, 11 minutes faster than the competition. EFFICIENCY When the baggage isn't left behind, the cargo compartments can be unloaded and reloaded well within the passenger turn round time. 70% of A320 users have opted for the containerization system based on the LD 3 standard. A wise choice when you consider the increasing proportion of an airline income that comes from freight. Although the A321 is only 18% longer than the A320, its underfloor capacity is 40% greater, room for three more containers. TECHNOLOGY Advanced composite materials and the best aluminum alloys produce a rugged yet light airframe. High structural efficiency directly reduces operating costs. The A321 and A319 are assembled in Germany at a purpose built Deutsch Airbus plant. Since potential corrosion problems are addressed at source, structural inspection programs are simplified reducing maintenance costs and enhancing resell value. More advanced technology can be seen in the wings, which are lighter and optimized for computer control flight. Because of better aerodynamics, they made the A320 and the A321 the most fuel efficient commercial jets on the market. RANGE The Airbus A321 cost per passenger mille is by far the lowest in its category. The A319 has the lowest fuel consumption. The engines too interface with the flight by wire controls and the autopilot system. The whole family has the same man machine interface. The Primary Flight Display alone replaces six conventional electromagnetic instruments. Information is displayed on a six cathode ray tubes when it is needed, thus reducing the crew's workload. A major asset of computer-aided design is ease of access to system operation parameters. This is an advantage for the Centralized Fault Display System (CFDS), the key to maintenance guidance. Any failure is analyzed, the faulty
THE A318/319/320/321 FAMILY. A GENERAL DESCRIPTION 7 component identified, the diagnosis made, and if necessary the information is transmitted to the ground in real time for time saving repair. The A320 family ties really come into their own when it comes to maintenance. Virtually all despairs, test devices and procedures are identical. No need for extra stocks or special training or facilities in service staff are available for the whole family. FLEET ADVANTAGE In terms of maintenance operating A320s, A321s and A319s is the same as operating a single type. The savings are enormous, common equipment, common staff. For cabin crew, the cabin is a just a little longer or shorter. For pilots the aircraft are virtually the same. They react in the same way to the same commands. This is true of all Airbus Industry new generation aircraft from the A319 to the four engine A340. The simulator is common to the whole family. Basic crew conversion costs are therefore much lower for airlines, which base their fleets on Airbus technology. Because the crews can be used on different aircraft, operations are more flexible and efficient. Designing a 192/200 seater based on the A320 was a natural step. The cost effectiveness of the idea is even clearer in market forecast. The advent of the A319 is perhaps even more inhibitive. Now airlines can adapt a slack operating periods and expand their commercial networks to second relines while keeping the fleet effect. The A319 opens up development perspectives for smaller airlines too by providing them now with a high quality aircraft that would go on being attractive. By founding the first real family of aircraft, Airbus Industry has created a novel concept based on standardization and maximum commonality. We have provided the market with three cost effective aircrafts, which operate efficiently together. This family works as a team. AIRCRAFT GENERAL The Single Aisle is the most advanced family aircraft in service today, with fly-by-wire flight controls. The A318, A319, A320 and A321 are twin-engine subsonic medium range aircraft. The family offers a choice of engines: - International Aero Engines and CFM International for the A319, A320 and A321.
SUPPLEMENTARY READING IN AIRCRAFT ENGINEERING 8 - Pratt & Whitney and CFM International for the A318. AIRCRAFT DIMENSIONS The picture shows the main dimensions for the A320. The A318, A319 and A321 have exactly the same dimensions except that: - the A318 is 6.12 m (20 ft) shorter and 1.18 m (3ft 10in) higher, - the A319 is 3.74 m (12ft 3in) shorter, - the A321 is 6.93 m (22ft 9in) longer. FAMILY RANGE With a Maximum Take-Off Weight (MTOW) of 77 tons (170000 lbs), the A320 has a range of 3600 Nm as shown above. - For the A318, with an MTOW of 66 tons (145500 lbs), it is 3900 Nm. - For the A319, with an MTOW of 68 tons (150000 lbs), it is 4200 Nm. - For the A321, with an MTOW of 83 tons (183000 lbs), it is 3100 Nm. COCKPIT PRESENTATION The cockpit has adjustable seats for two crew members, a third occupant seat and, depending on the configuration a folding seat for a fourth occupant. Various furnishings and equipment are installed in the cockpit for the comfort, convenience and safety of the occupants. OVERHEAD PANEL The controls of most aircraft systems are located on the overhead panel. The overhead panel is divided into two main sections: - a FWD section including the system panels, - an AFT section including mainly the circuit breaker panel. GLARESHIELD The Flight Control Unit (FCU) includes the EFIS controls, and is used for control and monitoring of the Auto Flight System (AFS). It is located on the glareshield. The "Master Warning" and the "Master Caution" lights are also located on the glareshield. MAIN INSTRUMENT PANEL (ENHANCED) The enhanced single aisle aircraft main instrument panel instrumentation has been updated. Liquid Crystal Displays (LCDs) replace the existing CRTs. A single integrated electronic indicator, the Integrated Standby Instrument System (ISIS) replaces the standby instrumentation: Standby horizon, Airspeed indicator and Altimeter.