Измерения в телекоммуникационных системах
Покупка
Тематика:
Цифровая связь. Телекоммуникации
Издательство:
ФЛИНТА
Год издания: 2018
Кол-во страниц: 224
Дополнительно
Вид издания:
Учебное пособие
Уровень образования:
ВО - Бакалавриат
ISBN: 978-5-9765-3620-3
Артикул: 684151.01.99
Излагаются основные сведения о современных методах и средствах измерений параметров телекоммуникационных систем. Наряду с традиционными электрорадиоизмерениями, такими как измерения тока, напряжения, мощности, частоты, фазового сдвига, радиопомех, спектров сигналов,
параметров элементов электрических цепей, рассматриваются средства измерений, предназначенные для обслуживания и эксплуатации только телекоммуникационных систем.
Учебное пособие предназначено для студентов, обучающихся по специальности «Информационная безопасность телекоммуникационных систем». Будет полезным для других направлений подготовки и специальностей, таких как «Радиотехника», «Радиоэлектронные системы», «Средства
связи с подвижными объектами», «Сети связи и системы коммутации».
Тематика:
ББК:
УДК:
ОКСО:
- 09.00.00: ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА
- ВО - Бакалавриат
- 09.03.01: Информатика и вычислительная техника
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов
Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б.Н. Ельцина А.В. Аминев, А.В. Блохин Измерения в телекоммуникационных системах Рекомендовано методическим советом УрФУ в качестве учебного пособия для студентов, обучающихся по специальности 090106 — Информационная безопасность телекоммуникационных систем Москва Издательство «ФЛИНТА» Издательство Уральского университета 2018 2-е издание, стереотипное
УДК 004.71(075.8) ББК 32.968я73 А62 Рецензенты: кафедра общепрофессиональных дисциплин Уральского технического института связи и информатики (филиал) Сибирского государственного университета телекоммуникаций и информатики (зам. зав. кафедрой канд. техн. наук, доц. Н. В. Будылдина); д-р техн. наук, проф. Т. В. Чирков (ООО «Прософт-Системы») Под общей редакцией проф. А. В. Блохина Аминев, А. В. Измерения в телекоммуникационных системах [Электронный ресурс]: учеб. пособие / А. В. Аминев, А. В. Блохин. — 2-е изд., стер. — М. : ФЛИНТА : Изд-во Урал. ун-та, 2018. — 224 с. ISBN 978-5-9765-3620-3 (ФЛИНТА) ISBN 978-5-7996-1317-4 (Изд-во Урал. ун-та) Излагаются основные сведения о современных методах и средствах измерений параметров телекоммуникационных систем. Наряду с традиционными электрорадиоизмерениями, такими как измерения тока, напряжения, мощности, частоты, фазового сдвига, радиопомех, спектров сигналов, параметров элементов электрических цепей, рассматриваются средства измерений, предназначенные для обслуживания и эксплуатации только телекоммуникационных систем. Учебное пособие предназначено для студентов, обучающихся по специальности «Информационная безопасность телекоммуникационных систем». Будет полезным для других направлений подготовки и специальностей, таких как «Радиотехника», «Радиоэлектронные системы», «Средства связи с подвижными объектами», «Сети связи и системы коммутации». Библиогр.: 11 назв. Табл. 6. Рис. 125. УДК 004.71(075.8) ББК 32.968я73 © Уральский федеральный университет, 2015 А62 ISBN 978-5-9765-3620-3 (ФЛИНТА) ISBN 978-5-7996-1317-4 (Изд-во Урал. ун-та)
Предисловие З начение измерений в жизни и развитии человеческого общества трудно переоценить. Любая отрасль науки и техники немыслима без измерений. Важную роль играют измерения и в технике телекоммуникационных систем (ТКС), где количественная и качественная оценки различных физических явлений осуществляются с помощью средств измерений. Успешное решение научных и технических проблем, разработка и изготовление аппаратуры ТКС, интенсификация и автоматизация производства, обеспечение высокой надежности и эффективности средств связи невозможны без использования высококачественной измерительной аппаратуры. Бурное развитие современных ТКС стало причиной появления целого класса новых измерительных приборов (анализаторов протоколов, оптических рефлектометров и т.д.). Этот класс измерительной техники отличается от традиционных средств специфической специализацией и применением, что привело к появлению новой отрасли измерений, условно называемой измерительными технологиями, которые предъявляют новые требования и подходы к методам и средствам измерений. Измерительная техника ТКС развивается в направлении автоматизации и убыстрения процесса измерений, повышения точности измерений и расширения пределов измеряемых величин, разработки новых измерительных приборов с высокой точностью и надежностью измерений. Особое место в развитии техники измерений занимает разработка методов и приборов для производства измерений без нарушения связи. Кроме того, развитие современной измерительной техники идет в основном по пути ее высокой специализации, поэтому к услугам специалистов ТКС предлагается измерительная техника для обслуживания и эксплуатации только систем связи и коммуникаций, и ее уже невозможно использовать для других областей измерительной деятельности.
Предисловие В последние годы более половины мирового телекоммуникационного рынка занимают соответствующие программные средства. Программное обеспечение современных ТКС обновляется в среднем раз в два года, радикально меняя возможности ТКС. Это, в свою очередь, приводит к появлению нового поколения специализированных средств измерений. Условно номенклатуру измерительного оборудования, использующегося для проведения измерений в ТКС, можно разделить на следующие основные группы: — общая измерительная техника; — техника для радиочастотных измерений; — измерительное оборудование и средства измерений волоконно- оптических линий связи; — аппаратура для измерений в цифровых линиях связи; — оборудование и средства измерений параметров электромагнитных сигналов в ТКС. Все вышеперечисленные группы измерительного оборудования рассматриваются в учебном пособии. Авторы надеются на то, что с общими вопросами методов и средств измерений, погрешностей измерений, обработки результатов измерений, организационно-правовых основ обеспечения единства измерений, основ квалиметрии, технического регулирования и стандартизации студенты, изучающие курс измерений в ТКС, ознакомлены ранее в курсе «Метрология, стандартизация и сертификация» [1]. Большое внимание в учебном пособии уделено не только номенклатуре традиционного оборудования электрорадиоизмерений, используемого в технике ТКС, но и новому классу оборудования, необходимому для контроля и эксплуатации первичной и вторичной сетей цифровой передачи информации. Авторы благодарны профессору А.П. Мальцеву и доценту А.С. Лучинину за полезные советы при обсуждении существа, трактовки и изложения некоторых вопросов на этапе подготовки рукописи учебного пособия к изданию.
Введение Т елекоммуникационные системы и сетевые технологии являются в настоящее время той движущей силой, которая обеспечивает развитие мировой цивилизации. Практически нет области производственных и общественных отношений, которая не использовала бы возможности современных технологий на базе телекоммуникационных систем и сетей. ТКС используются в настоящее время в любой области предметной деятельности человечества. Возьмем, например, электросвязь. Вот некоторые ее применения: — телефонная связь (аналоговая, цифровая, мобильная); — телеграфная связь; — сети передачи данных; — факсимильная связь; — документальная электросвязь; — цифровые сети интегрального обслуживания; — широкополосные и интеллектуальные сети; — цифровые коммутационные системы с программным управлением; — интегральные информационные системы управления предприятиями электросвязи; — мобильные сети; — локальные сети; — глобальные сети; — спутниковые сети. Что же измеряют в перечисленных выше системах и сетях при их производстве, оценке технического состояния, обслуживании, оценивании качества обработки, защиты и передачи информации и эксплуатации? К числу измеряемых параметров и характеристик в ТКС следует отнести: — силовые параметры сигналов (постоянные и переменные напряжения и токи); — энергетические параметры сигналов (мощность, шумовые параметры радиоэлектронных устройств, уровни передачи, рабочего затухания, рабочего усиления);
Введение — временные и частотные параметры сигналов (частота, период колебаний, фазовые сдвиги, фазовое дрожание цифрового сигнала, форма импульсов, анализ кодовых групп, анализ спектра, нелинейные искажения, параметры модулированных сигналов); — параметры электрических цепей (сопротивление, индуктивность, емкость, добротность); — параметры волоконно-оптических линий связи (коэффициент затухания, анализ неоднородностей, дисперсия); — техническая диагностика и анализ протоколов и интерфейсов в цифровых линиях связи. Это далеко не полный список параметров и характеристик, с которыми приходится сталкиваться специалисту при проведении измерений в ТКС. Для измерения указанных выше параметров зачастую используют традиционные электрорадиоизмерительные приборы и устройства, выпускаемые отечественной промышленностью и постоянно совершенствующиеся. Однако специфика ТКС требует применения узкоспециализированных измерительных приборов и устройств, предназначенных для проведения измерений только в ТКС. К таким средствам измерений можно отнести оптические измерители мощности, источники оптических сигналов, анализаторы протоколов, рефлектометры, дефектоскопы, анализаторы спектра и др. Парк узкоспециализированных средств измерений пополняется в основном за счет зарубежных поставок. Основная задача учебного пособия — научить правильно и обоснованно выбирать метод измерения и измерительные приборы, обеспечивающие наилучшую достоверность проводимого измерения, производить само измерение и обрабатывать результаты измерений с учетом имеющихся погрешностей.
Глава 1. Стандартные узлы средств измерения Б ольшинство современных средств измерения (СИ), используемых в практике измерений в ТКС, состоят из одинаковых стандартных структурных узлов. В измерительную цепь СИ эти узлы включаются для каждого конкретного устройства по-разному, в зависимости от функционального назначения СИ, реализующего тот или иной алгоритм, а также в зависимости от структурной схемы СИ, реализующей тот или иной метод измерения. К стандартным узлам относятся масштабные измерительные преобразователи, преобразователи мгновенных значений напряжений и токов, аналого-цифровые (АЦП) и цифроаналоговые (ЦАП) преобразователи, генераторы электрических сигналов, микропроцессоры, индикаторы. В различных цифровых СИ дискретные значения измерительных сигналов могут быть представлены для последующей обработки или индикации в виде кодовых комбинаций, которые также стандартизированы для большинства СИ. Все указанные выше стандартные узлы СИ имеют нормированные метрологические характеристики. Промышленное производство этих узлов унифицировано и осуществляется в строгом соответствии с государственными стандартами. 1.1. Масштабные измерительные преобразователи Масштабные измерительные преобразователи предназначены для изменения размера физической величины в заданное число раз. К преобразовательным устройствам, осуществляющим функции масштабного преобразования, принято относить шунты, добавочные резисторы, делители напряжения, измерительные трансформаторы тока и напряжения, измерительные усилители.
Глава 1. Стандартные узлы средств измерения Шунты предназначены для расширения пределов измерения по току и представляют собой калиброванные резисторы (меры). Схема включения шунта к измерительному прибору (ИП) показана на рис. 1.1. Сопротивление шунта выбирается таким, чтобы большая часть тока протекала по шунту. Конкретное сопротивление шунта можно определить из равенства IпрRпр = IшRш, откуда Rш = Rпр (Iпр/Iш). Учитывая, что Ix = Iпр + Iш, можно записать R R I I R I I R n x x ш = ж и з ц ш ч = = пр ш пр пр пр / 1 1 1 . (1.1) Коэффициент n = Ix/Iпр принято называть коэффициентом шунтирования. Из выражения (1.1) следует n = (Rш + Rпр)/Rш. Шунты применяют в основном с магнитоэлектрическими измерительными механизмами в цепях постоянного тока. На переменном токе сопротивление шунта и сопротивление измерительного механизма при изменении частоты измеряемого сигнала изменяются неодинаково, что приводит к дополнительной погрешности. Конструктивно различают внутренние и наружные шунты. Внутренние шунты применяют обычно в амперметрах для измерения небольших токов (до 30 А). Они располагаются, как правило, внутри корпуса прибора. Наружные (внешние) шунты используют с приборами для измерения больших токов (до 6000 А). В этом случае мощность, рассеиваемая шунтом, не нагревает прибор. Основные параметры шунтов регламентируются. По точности различают следующие классы шунтов: 0,02; 0,05; 0,1; 0,2; 0,5. Класс точности означает допустимое отклонение сопротивления шунта от его номинального значения, выраженное в процентах. Рис. 1.1. Схема включения шунта Rпр ИП Rш Rн Ux Ix Iпр Iш
1.1. Масштабные измерительные преобразователи Добавочные резисторы предназначены для расширения пределов измерения по напряжению ИП, т.е. они ограничивают ток в цепи ИП и позволяют использовать его для измерения больших значений напряжения. Добавочные резисторы включают последовательно с ИП (рис. 1.2). Rпр ИП Rд1 Ux Iпр Uпр Rд2 Uдоб Рис. 1.2. Схема включения добавочного резистора Расширение пределов измерения прибора за счет добавочного резистора принято оценивать коэффициентом расширения (множителем шкалы) m = Ux /Uпр. Сопротивление добавочного резистора Rд можно определить исходя из равенства Ux = Uпр + Uдоб = Iпр Rпр + Iпр Rдоб, откуда Rдоб = Ux /Iпр – Rпр = (Ux /Uпр – 1)Rпр = (m – 1)Rпр. Добавочные резисторы выполняют обычно однопредельными для щитовых приборов и многопредельными — для переносных. По точности добавочные резисторы подразделяют на классы: 0,02; 0,05; 0,1; 0,2; 0,5. Класс точности добавочных резисторов определяется отношением абсолютной погрешности значения сопротивления ΔR к его номинальному значению Rном: d = ± Ч DR Rном 100 % . Делители напряжения предназначены для уменьшения напряжения в определенное число раз.
Глава 1. Стандартные узлы средств измерения Основными показателями делителей напряжения являются коэффициент деления (коэффициент передачи) Kд; частотный диапазон, в котором сохраняется постоянство Kд; допускаемая мощность рассеивания; погрешность деления. Схемы наиболее распространенных делителей напряжения представлены на рис. 1.3. а Uвх Rн R1 R2 Uвых Uвх Cн C1 C2 Uвых Uвх Rн R1 R2 б в C2 C1 Cн Uвых Рис. 1.3. Схемы делителей напряжения: а — резистивного; б — емкостного; в — с корректирующими элементами Коэффициент деления для простейшего резистивного делителя (рис. 1.3, а) можно записать в виде K U U R R R д вых вх = = + 2 1 2 . (1.2) При относительно невысоком сопротивлении нагрузки коэффициент деления Kд зависит от сопротивления нагрузки Rн, и в формуле (1.2) вместо R2 нужно использовать R R R R R 2 1 2 2 * = + ( ) н . Коэффициент деления для емкостного делителя (рис. 1.3, б) определяется нижеприведенным выражением при условии, что С2 значительно меньше Сн. Если же это условие не выполняется, то расчет ведется с учетом Сн: K C C C д = + 1 1 2 . (1.3) Емкостные делители используют в высокочастотных цепях, так как они обладают свойствами неизменности коэффициента деления в диапазоне до сотен мегагерц.