Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Математика для медицинских колледжей

Покупка
Артикул: 171065.05.01
В учебнике рассмотрены основные темы современной математики, необходимые для профессионального обучения медицинских работников среднего звена. Предложены основные теоретические понятия, примеры решения задач, задания для самостоятельной работы. В темах прикладного характера прослеживается профильная направленность изучаемой дисциплины. Адресован студентам и преподавателям медицинских колледжей.
Гилярова, М. Г. Математика для медицинских колледжей: Учебник / Гилярова М.Г., - 4-е изд. - Ростов-на-Дону :Феникс, 2016. - 442 с. (Среднее медицинское образование)ISBN 978-5-222-26289-4. - Текст : электронный. - URL: https://znanium.com/catalog/product/556943 (дата обращения: 29.11.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов
Среднее медицинское образование

М. Г. Гилярова

МатеМатика  
для медицинских колледжей

Рекомендовано  
Научно-методическим советом  
Международного научного общественного  
объединения «МАИТ» в качестве учебника  
для студентов образовательных учреждений  
среднего профессионального образования,  
обучающихся по направлению подготовки  
31.02.01 «Лечебное дело»,  
31.02.02 «Акушерское дело»,  
31.02.03 «Лабораторная диагностика»,  
34.02.01 «Сестринское дело»,  
31.02.05 «Стоматология ортопедическая»

Издание пятое

Ðîñòîâ-íà-Äîíó
 
åíèêñ
2016

УДК 51(075.32)
ББК 22.1я723
КТК 11
     Г 47

 

Гилярова М. Г.
Г 47  Математика для медицинских колледжей : учебник. — Изд. 5-е. — Ростовн/Д : Феникс, 2016. —
442, [1] с.: ил. — (Среднее медицинское образование).

ISВN 978-5-222-26289-4

В учебнике рассмотрены основные темы современной математики, необходимые для профессионального
обучения медицинских работников среднего звена.
Предложены основные теоретические понятия, примеры
решения задач, задания для самостоятельной работы. 
В темах прикладного характера прослеживается профильная направленность изучаемой дисциплины.
Адресован студентам и преподавателям  медицинских колледжей.

ISВN 978-5-222-26289-4

УДК 51(075.32)

ББК 22.1я723

© Гилярова М. Г., 2015
© Оформление: ООО «Феникс», 2015

Содержание

Предисловие ................................................................... 6

Раздел 1. Основные математические методы  
решения прикладных задач в области  
профессиональной деятельности ................................. 9

Тема 1.1. Роль и место математики в современном 
мире. Пропорция. Задачи на проценты .................. 9

Тема 1.2. Основные свойства функций  
и их графики .....................................................49

Тема 1.3. Применение математических методов  
в профессиональной деятельности среднего  
медицинского персонала .....................................66

Исторические сведения к разделу 1 ....................105

Раздел 2. Дифференциальное и интегральное  
исчисление .................................................................. 116

Тема 2.1. Предел функции в точке. Раскрытие  

неопределенности вида ∞

∞

 .................................116

Тема 2.2. Раскрытие неопределенности вида 0

0 . 
Первый замечательный предел ..........................126

Тема 2.3. Правила дифференцирования.  
Производная функции в точке. Производные  
высших порядков .............................................138

Тема 2.4. Дифференциал функции. Применение 
дифференциала к приближенным вычислениям ..150

Тема 2.5. Геометрические приложения  
производной ....................................................158

Тема 2.6. Первообразная и неопределенный  
интеграл. Замена переменной  
в неопределенном интеграле ..............................170

Тема 2.7. Определенный интеграл. Формула  
Ньютона – Лейбница. Свойства определенного  
интеграла ........................................................185

Тема 2.8. Геометрические приложения  
определенного интеграла. Физические  
приложения определенного интеграла ................198

Исторические сведения к разделу 2 ....................219

Раздел 3. Основы дискретной математики ............. 227

Тема 3.1. Множества. Действия над множествами. 
Основные понятия комбинаторики .....................227

Тема 3.2. Основные понятия теории графов ........241

Тема 3.3. Элементы математической логики.  
Булева алгебра .................................................263

Исторические сведения к разделу 3 ....................267

Раздел 4. Основные понятия и методы теории  
вероятностей и математической статистики .......... 282

Тема 4.1. Основы теории вероятностей. Теоремы 
сложения и умножения вероятностей .................282

Тема 4.2. Закон распределения дискретной  
случайной величины .........................................305

Тема 4.3. Математическая статистика  
и ее роль в медицине и здравоохранении ............315

Тема 4.4. Статистическое определение  
вероятности. Выборочный метод ........................332

Тема 4.5. Интервальное распределение выборки. 
Статистические оценки параметров  
распределения ..................................................339

Тема 4.6. Медико-демографические  
показатели ......................................................362

Исторические сведения к разделу 4 ....................392

Практические работы .......................................398

Приложения ............................................................... 414

Приложение 1. Справочные материалы ...............414

Приложение 2. Примерные темы рефератов для 
самостоятельной работы студентов .....................419

Приложение 3. Итоговая контрольная работа ......421

Приложение 4. Тест-контроль ............................423

Приложение 5. Задачи для любителей  
математики .....................................................428

Приложение 6. Контрольные вопросы для зачета 431

Приложение 7. Высказывания великих людей  
о математике ...................................................435

Литература ......................................................442

Предисловие

Учебник написан на основе опыта ведения теоретических и практических занятий в медицинском колледже 
и предназначен для изучения и углубления знаний по 
математике на учебных занятиях и для организации 
самостоятельной работы студентов.
Книга представляет собой освещение всех изучаемых 
разделов математики, направленных на овладение основных понятий и применения математических знаний 
в работе медицинского персонала среднего звена.
Учебник содержит материал, предусмотренный Федеральным государственным образовательным стандартом 
среднего профессионального образования по дисциплине 
«Математика» для всех специальностей медицинского 
колледжа, в структуре основной профессиональной образовательной программы место дисциплины в математическом и естественнонаучном цикле.
В результате освоения дисциплины обучающийся 
должен уметь решать прикладные задачи в области профессиональной деятельности.
В процессе освоения дисциплины обучающийся должен понять:
 
— значение математики в профессиональной деятельности и при изучении профессиональной образовательной программы;
 
— основные математические методы решения прикладных задач в области профессиональной деятельности;
 
— основные понятия и методы теории вероятностей 
и математической статистики; 
 
— основы интегрального и дифференциального исчисления.
В учебном издании рассматриваются основные понятия следующих разделов математики: алгебра, теория 
пределов, основы математического анализа (дифференциальное и интегральное исчисление), дискретная математика, логика, теория вероятности, математическая 
статистика. Кроме этого, в изложении предусмотрена 

интеграция со следующими дисциплинами: медицинская 
статистика, валеология, анатомия, педиатрия, терапия, 
экономика и управление здравоохранением. Учитывается 
профессиональная направленность курса математики, что 
способствует воспитанию у студентов уверенности в профессиональной значимости изучаемого предмета. Решая 
задачи из области фармакологии, биологии и медицины, 
студенты убеждаются в справедливости теоретических 
основ математики и видят их практическое применение.
Для каждого раздела рассматриваемых тем математики дан короткий исторический очерк по используемым понятиям. Этот материал подчеркивает значимость 
изучаемого материала, создает атмосферу необходимости 
освоения базового математического багажа знаний. Кроме этого, появляются сознательные мотивы изучения 
предмета. Мотивация и профильность в современном 
обучении играют важную роль в успешном усвоении 
дисциплины. Каждая тема включает в себя перечень 
изучаемых терминов, основные теоретические понятия, 
примеры решения задач, задания для самостоятельной 
работы, контрольные вопросы.
Цель создания книги заключается в том, чтобы помочь студентам расширить, суммировать и систематизировать знания по математике, полученные в средней 
школе, а также научить их пользоваться ими для совершенствования навыков своей будущей работы.
Для итогового контроля знаний предложены контрольная работа и тестовые задания по вариантам, вопросы для дифференцированного зачета.
Учебник может быть использован как под руководством преподавателя, так и для самостоятельного изучения студентами, так как в каждой главе в качестве 
примеров предложены задачи с решениями и ответами.
Книга поможет студентам в изучении основ высшей 
математики и будет полезна преподавателям для рассмотрения профильной направленности медицинской 
математики.

Условные обозначения

 
 ⇔ — равносильно, эквивалентно, тогда и только тогда
 
def — по определению равно
 const — постоянная величина
 
∅ — пустое множество
 
{} — множество элементов
  ∈ / ∉ — принадлежит / не принадлежит
 
Ν — множество всех натуральных чисел
 
Ζ — множество всех целых чисел
 
Q — множество всех рациональных чисел
 
R — множество всех действительных (вещественных) 
чисел
 
R + — множество всех положительных действительных 
чисел
 D(f) — область определения функции y = f(x)
 E(f) — множество (область) значений функции y = f(x)
  < / > — меньше / больше
  ≤ / ≥ — меньше либо равно / больше либо равно
 
⇒ — следует
 
 ≈ — приблизительно равно
 
 ∩ — пересечение множеств, интервалов
 
 ∪ — объединение множеств, интервалов
 
√– — знак корня
 
∞ — знак бесконечности
 
 — знак модуля
     |x| — абсолютная величина числа
 
[x] — целая часть числа
 
{x} — дробная часть числа
 
∀ — для любого значения
 
∃ — существует

Раздел 1 

Основные математические методы 
решения прикладных задач в области 
профессиональной деятельности

Тема 1.1. Роль и место математики  
в современном мире. Пропорция.  
задачи на проценты

 
 
Термины

 • Пропорция
 • Основное свойство  
пропорции
 • Процент
 • Задачи на проценты 
 • Процентная концентрация 
раствора
 • Концентрация раствора  
в соотношении

 • Единицы длины 
 • Единицы площади
 • Единицы объема
 • Единицы веса
 • Правила округления чисел
 • Абсолютная погрешность 
 • Относительная погрешность 
измерения

 
ОснОвные ПОняТия

 
Роль и место математики в современном мире

Математическое образование должно составлять 
неотъемлемую часть культурного багажа любого современного человека. Но оно не должно никоим образом 

сводиться к рецептурам (будь то таблица умножения или 
расчет антропометрических индексов).
Основной целью математического образования должно быть воспитание умения математически исследовать 
явления реального мира. Способность составлять и исследовать математические модели является важнейшей 
составной частью этого умения.
Начало периода элементарной математики относят к 
VI–V вв. до н. э. К этому времени был накоплен достаточно большой фактический материал. Понимание математики как самостоятельной науки впервые возникло 
в Древней Греции. В течение этого периода математические исследования имеют дело лишь с достаточно ограниченным запасом основных понятий, возникших для 
удовлетворения самых простых запросов хозяйственной 
жизни. Развивается арифметика — наука о простейших 
свойствах чисел.
В период развития элементарной математики появляется теория чисел, постепенно выросшая из арифметики. 
Создается алгебра как буквенное исчисление. Обобщается труд большого числа математиков, занимающихся 
решением геометрических задач, в стройную и строгую 
систему элементарной геометрии — геометрию Евклида 
(300 лет до н.э.), изложенную в его знаменитом труде 
«Начала», включающем 15 книг.
В XVII в. запросы естествознания и техники привели к созданию методов, позволяющих математически изучать движение, процессы изменения величин, 
преобразование геометрических фигур. С употребления 
переменных величин в аналитической геометрии и создания дифференциального и интегрального исчисления 
начинается период математики переменных величин. 
Великим открытием XVII в. является введенное И. Ньютоном (1643–1727) и Г. Лейбницем (1646–1716) понятие 
бесконечно малой величины, создание основ анализа 
бесконечно малых (математического анализа).
На первый план выдвигается понятие функции. 
Функ ция становится основным предметом изучения. 
Изучение функции приводит к основным понятиям 
математического анализа: пределу, производной, дифференциалу, интегралу.